Венгерский метод теория. Венгерский алгоритм решения задачи о назначениях. Алгоритм решения задачи о назначении на узкие места

Рассмотрим следующий пример. Пусть для выполнения пяти различных работ имеется пять человек. Из отчетных данных известно, какое время требуется каждому из них для выполнения каждой работы. Эти данные приведены в таблице.

исполнители

потребности

В данном случае величины представляют собой затраты времени каждого работника на выполнение каждой из работ, а величины равны либо 1, либо 0, причем равен 1, если работник i назначен на работу j, и 0 во всех остальных случаях. Таким образом задача сводится к минимизации функции. стоимость маршрут линейный программирование

при следующих ограничениях.

Ясно, что если отбросить последнее условие и заменить его условием

То получается транспортная задача, в которой все потребности и все ресурсы равны единице. В оптимальном решении все равны либо целому числу, либо нулю, причем единственным возможным целым является единица. Таким образом, решение транспортной задачи при этих условиях всегда приводит к равенству.

Однако вследствие вырожденности методы решения транспортных задач в случае задачи о назначении оказываются малоэффективными. При любом назначении всегда автоматически совпадают поставки по строке со спросом по столбцу и поэтому вместо 2n-1 получаем n ненулывых значений. В связи с этим необходимо заполнить матрицу n-1 величинами е, и может оказаться, что ненулевые значения определяют оптимальное решение, однако проверка его не обнаруживает, так как величины е расставлены неверно.

Метод решения задачи о назначении основан на двух довольно очевидных теоремах. Первая из них утверждает, что решение не изменится, если прибавить к любому столбцу или строке матрицы некоторую константу или вычесть ее из них. Эта теорема точно формулируется следующим образом:

Теорема 1.

Если минимизирует

по всем, таким что и

то минимизирует также функционал

где при всех

Теорема 2.

Если все и можно отыскать набор такой, что

то это решение оптимально.

Вторая теорема очевидна. Для доказательства первой теоремы заметим, что

Вследствие того что величины, вычитаемые из Z с целью получения, не зависят от, достигает минимума всегда, когда минимизируется Z, и наоборот.

Разработанный метод решения сводится к прибавлению констант к строкам и столбцам и вычитанию их из строк и столбцов до тех пор, пока достаточное число величин не обращается в нуль, что дает решение, равное нулю.

Отыскание решения начинают, вычитая наименьший элемент из каждой строки, а затем из каждого столбца. В таблице даны результаты для приведенного выше примера.

Таблица А)

исполнители

вычитается

Таблица Б)

исполнители

вычитается

Из столбцов и строк было вычтено всего 10 единиц. Поэтому для правильной оценки любого решения, получаемого при использовании таблицы (Б), необходимо прибавить к результату 10 единиц

Прежде всего стремятся отыскать решение, включающее лишь те клетки таблицы (Б),в которых стоят нулевые элементы, поскольку такое решение, если его удается найти, будет наилучшим из всех возможных. Однако встречаются случаи, когда несколько решений имеют одинаковое качество. Допустимое решение помечено в таблице (Б) скобками. Однако, для того чтобы определить, возможно ли улучшение решения, применяется следующий алгоритм.

Заметим предварительно, что любое дальнейшее вычитание из строки или столбца, хотя и может приводить к появлению новых нулей, неизбежно приводит в появлению отрицательных элементов, так что нулевое решение теперь не обязательно будет оптимальным. Однако отрицательные элементы можно исключить, прибавляя соответствующие числа к строкам или столбцам. Так например, если вычесть 2 из столбца 1 в таблице (Б), то в строке 1 появится элемент - 2. Если теперь прибавить 2 к строке 1, то вновь получим матрицу с неотрицательными элементами. Задача заключается в том, чтобы получать новые нули указанным способом, но вместе с тем в конечном счете получить матрицу, содержащую решение среди одних нулей. Можно доказать, что описываемый ниже алгоритм обеспечивает решение этой задачи.

1. Провести минимальное число горизонтальных и вертикальных прямых, пересекающих по крайней мере один раз все нули. Выполнение этого шага для таблицы (Б) дает результат в таблице 1.

Таблица 1

Заметим, что в данном случае используется только четыре линии, а следовательно, нулевые клетки не содержат оптимального решения.

  • 2. Выбрать наименьший элемент, через который не проведена линия. В примере это 1 в клетке (5,2).
  • 3. Вычесть это число из всех элементов, через которые не проведена ни одна линия, и прибавить его ко всем элементам, через которые проведены две линии. В данном примере получается результат, показанный в таблице 2.

Таблица 2

Этот шаг должен приводить к появлению нуля в клетке, где его ранее не было. В рассматриваемом примере это клетка (5,2).

4. Определить, имеется ли решение среди нового набора нулей. Если решение не обнаруживается (в данном примере оно отсутствует), то вернуться к шагу 1 и выполнить все последующие шаги, пока не будет найдено решение. продолжая рассматривать данный пример, получаем результат, приведенный в таблице 3.

Таблица 3

В этой таблице уже содержится решение, помеченное скобками и имеющее значение 13, что на 1 лучше исходного допустимого решения. , .

Пример 2.

Представлено четыре студента и четыре вида работ. Следующая таблица соответствует матрице стоимостей для этой задачи.

Выполним первый шаг алгоритма.

Теперь вычтем минимальные стоимости из элементов соответствующих строк.

На втором шаге алгоритма находим минимальные значения по столбцам и вычитаем их из элементов соответствующих столбцов. В результате получим матрицу, представленную в следующей таблице.

В последней матрице расположение нулевых элементов не позволяет назначить каждому ребенку одну работу. Например, если мы назначим Даше уборку гаража, из дальнейшего рассмотрения исключается первый столбец и тогда, в строке Аллы не окажется нулевых элементов.

  • 1) В последней матрице проведем минимальное число горизонтальных и вертикальных прямых по строкам и столбцам с тем, чтобы вычеркнуть все нулевые элементы.
  • 2) Найдем наименьший невычеркнутый элемент и вычтем его из остальных невычеркнутых элементов и прибавим к элементам, стоящим на пересечении проведенных прямых.

В задаче данного примера требуется провести три прямых, это приводит к следующей таблице:

Наименьший невычеркнутый элемент равен 1. Этот элемент вычитаем из остальных невычеркнутых элементов и прибавляем к элементам, стоящим на пересечении прямых. В результате получим матрицу, представленную в следующей таблице.

Оптимальное решение, показанное в таблице, предлагает Даше убрать гараж, Кате стричь газоны, Алле мыть машины, а Саше выгуливать собак. Соответствующее значение целевой функции равно 1+10+5+5=21. Такое же значение можно получить путем суммирования значений и и значения элемента, наименьшего среди всех невычеркнутых.

Шаг 1. (Редукция строк и столбцов). Цель данного шага состоит в получении максимально возможного числа нулевых элементов в матрице стоимостей. Для этого из всех элементов каждой строки вычитают минимальный элемент соответствующей строки, а затем из всех элементов каждого столбца полученной матрицы вычитают минимальный элемент соответствующего столбца. В результате получают редуцированную матрицу стоимостей и переходят к поиску назначений.

Шаг 2. (Определение назначений). На этом шаге можно использовать алгоритм поиска «наибольшего паросочетания с матрицей двудольного графа (существуют и другие возможности), если все =0 матрицы заменить на «1», а >0 на «0».

Если нельзя найти полного назначения, то необходима дальнейшая модификация матрицы стоимостей, т.е. перейти к шагу 3.

Шаг 3 . (Модификация редуцированной матрицы). Для редуцированной матрицы стоимостей:

а) Вычислить число нулей в каждой невычеркнутой строке и каждом невычеркнутом столбце.

б) Вычеркнуть строку или столбец с максимальным числом нулей.

в) Выполнять пункты а) и б) до тех пор, пока не будут вычеркнуты все нули.

г) Из всех невычеркнутых элементов вычесть минимальный невычеркнутый элемент и прибавить его к каждому элементу, расположенному на пересечении двух линий.

Перейти к шагу 2.

Замечание 3 .Если исходная задача является задачей максимизации, то все элементы матрицы стоимостей следует умножить на (-1) и сложить их с достаточно большим числом так, чтобы матрица не содержала бы отрицательных элементов. Затем задачу следует решать как задачу минимизации.

Пример 13.5. Покажем работу венгерского алгоритма на примере задачи о назначениях со следующей матрицей стоимостей:

Итерация 1

Шаг 1 . Редукция строк и столбцов.

Значения минимальных элементов строк 1, 2, 3 и 4 равны 2, 4, 11 и 4 соответственно. Вычитая из элементов каждой строки соответствующее минимальное значение, получим следующую матрицу:

Значения минимальных элементов столбцов 1, 2, 3 и 4 равны 0, 0, 5 и 0 соответственно. Вычитая из элементов каждого столбца соответствующее минимальное значение, получим следующую матрицу.

Шаг 2 . Поиск допустимого решения, для которого все назначения имеют нулевую стоимость. Используем алгоритм поиска наибольшего паросочетания. Преобразуем матрицу в матрицу двудольного графа, затем в рабочую таблицу:

Находим паросочетание:

Это паросочетание не совершенное, т.е. полного назначения нет. На Шаг 3.

Шаг 3. Модификация редуцированной матрицы.

а) Число нулей в строках 1, 2, 3 и 4 равно 1, 1, 2 и 1 соответственно. Для столбцов соответствующие величины равны 2, 1, 1 и 1.

б) Максимальное число нулей, по два, содержат строка 3 и столбец 1. Выбираем строку 3 и вычеркиваем все ее элементы горизонтальной линией.

в) Число невычеркнутых нулей в строках 1, 2 и 4 равно 1, 1 и 1 соответственно. Для столбцов соответствующие значения равны 2, 1, 0, и 0. Поэтому мы должны выбрать столбец 1 и вычеркнуть его вертикальной линией. После этого останется только один невычеркнутый нуль – элемент (2,2). Поэтому можно вычеркнуть либо строку 2, либо столбец 2. Вычеркивая строку 2 горизонтальной линией, получаем следующую матрицу:

г) Значение минимального невычеркнутого элемента равно 2. Вычитая его из всех невычеркнутых элементов и складывая его со всеми элементами, расположенными на пересечении двух линий, получаем новую матрицу стоимостей.

Алгоритм решения:

1. Решаемзадачу на минимум. Цель данного шага - получение максимально возможного числа нулей в матрице С. Для этого находим в матрице С в каждой строке минимальный элемент и вычитаем его из каждого элемента соответствующей строки. Аналогично в каждом столбце вычитаем соответствующий минимальный элемент.

Если задана не квадратная матрица, то делаем её квадратной, проставляя стоимости равными максимальному числу в заданной матрице.

2. Если после выполнения первого шага можно произвести назначения, то есть в каждой строке и столбце выбрать нулевой элемент, то полученное решение будет оптимальным. Если назначения провести не удалось, то переходим к третьему шагу.

3. Минимальным числом прямых вычёркиваем все нули в матрице и среди не вычеркнутых элементов выбираем минимальный, его прибавляем к элементам, стоящим на пересечении прямых и отнимаем от всех не вычеркнутых элементов. Далее переходим к шагу 2.

Венгерский метод наиболее эффективен при решении транспортных задач с целочисленными объемами производства и потребления.

Пример

Задача о назначениях является частным случаем транспортной задачи, в которой ai = bj = 1. Поэтому ее можно решать алгоритмами транспортной задачи. Рассмотрим другой метод, который является более эффективным, учитывающим специфику математической модели. Этот метод называется венгерским алгоритмом.

Он состоит из следующих шагов:

1) преобразования строк и столбцов матрицы ;

2) определение назначения;

3) модификация преобразованной матрицы.

1-й шаг . Цель данного шага — получение максимально возможного числа нулевых элементов в матрице С. Для этого из всех элементов каждой строки вычитаем минимальный элемент соответствующей строки, а из всех элементов каждого столбца вычитаем минимальный элемент соответствующего столбца.

2-й шаг. Если после выполнения 1-го шага в каждой строке и каждом столбце матрицы С можно выбрать по одному нулевому элементу, то полученное решение будет оптимальным назначением.

3-й шаг . Если допустимое решение, состоящее из нулей, не найдено, то проводим минимальное число прямых через некоторые столбцы и строки так, чтобы все нули оказались вычеркнутыми. Выбираем наименьший невычеркнутый элемент. Этот элемент вычитаем из каждого невычеркнутого элемента и прибавляем к каждому элементу, стоящему на пересечении проведенных прямых.

Если после проведения 3-го шага оптимальное решение не достигнуто, то процедуру проведения прямых следует повторять до тех пор, пока не будет получено допустимое решение.

Пример .

Распределить ресурсы по объектам.

Решение. 1-й шаг. Значения минимальных элементов строк 1, 2, 3 и 4 равны 2, 4, 11 и 4 соответственно. Вычитая из элементов каждой строки соответствующее минимальное значение, получим


Значения минимальных элементов столбцов 1, 2, 3 и 4 равны 0, 0, 5, 0 соответственно. Вычитая из элементов каждого столбца соответствующее минимальное значение, получим

2-й шаг. Ни одно полное назначение не получено, необходимо провести модификацию матрицы стоимостей.

3-й шаг. Вычеркиваем столбец 1, строку 3, строку 2 (или столбец 2). Значение минимального невычеркнутого элемента равно 2:

Вычитаем его из всех невычеркнутых элементов и, складывая его со всеми элементами, расположенными на пересечении двух линий, получим

Ответ. Первый ресурс направляем на 3-й объект, второй — на 2-й объект, четвертый — на 1-й объект, третий ресурс — на 4-й объект. Стоимость назначения: 9 + 4 + 11 + 4 = 28.

Примечания. 1. Если исходная матрица не является квадратной, то нужно ввести фиктивные ресурсы или фиктивные объекты, чтобы матрица стала квадратной.

Задача: Решить задачу о назначениях на максимум.

Не будем приводить какое-либо словесное условие, они могут быть разные, например «На работу устраиваются 6 кандидатов на 6 вакансий и они получили соответствующие оценки при собеседовании на каждую вакансию, провести набор кандидатов на шесть вакансий так, чтобы суммарная оценка кандидатов была максимальной» или «шесть станков выполняют шесть работ за время, заданное в таблице, составить производственный план…». Будем считать, что перед нами матрица (платежная, временная и т.д.) и нужно решить задачу о назначениях венгерским методом на максимум, т.е. выбрать по одной клетке в строке и столбцу так, чтобы из сумма была максимальна.

Решение:
Шаг 1:
Замечание: первый шаг требуется только для решения задачи на максимум, если вам требуется решить её на минимум, то пропустите его.

Преобразуем матрицу, заменив каждый элемент матрицы разностью максимального элемента этой строки и самого элемента.


Вычтем

Шаг 2.

Требуется получить нули в каждой строке и в каждом столбце. В третьем, пятом и шестом столбцах нулей нет, вычтем из элементов этих столбцов минимальный элемент соответствующего столбца.


Вычтем

Шаг 3.

Получили матрицу, в которой в каждой строки и каждом столбце есть ноль. Нашей целью является отметить по одной ячейке в каждой строке и каждом столбце так, чтобы они были нулевые. В этой матрице только первые четыре строки и столбца удовлетворяют этому требованию. Отметим соответствующие ячейки рамкой.

Отметим как «недовольную строку», 5-ю, в которой мы такой ноль отметить не смогли, и второй столбец, он содержит ноль в пятой строке. Но второй столбец также содержит ноль в первой строке, отметим и ее как «недовольную». Первая строка нулей больше не содержит, т.е. процесс отмечания недовольных строк закончен, и мы получили ситуацию под названием «узкое место».

В таблице будем отмечать недовольные строки и столбцы звездочками, а число рядом со звездочкой будет означать порядок отмечания (для лучшего понимания процесса) .

Выберем минимальный элемент в помеченных строках вне отмеченных строк. Это 3, стоящая в пятом столбце и пятом столбце.
Вычтем этот элемент из отмеченных строк и прибавим в полученных столбцах.

Выполним действия, заметим, что теперь можно отметить ноль в пятой строке и пятом столбце.


Шаг 4.

Не хватает еще нуля в 6-ой строке. Отметим её как недовольную, она имеет ноль в первом столбце, отметим его как недовольный, он, в свою очередь, содержит ноль во второй строке, отметим её, но она более нулей не содержит, процесс отмечания законен.

Задача о назначениях ставится весьма естественно.

Приведём несколько вариантов постановки (как легко видеть, все они эквивалентны друг другу):

Отметим, что все приведённые выше постановки "квадратны ": в них обе размерности всегда совпадают (и равны ). На практике часто встречаются аналогичные "прямоугольные " постановки, когда , и надо выбрать элементов. Впрочем, как легко заметить, от "прямоугольной" задачи всегда можно перейти к "квадратной", добавив строки/столбцы с нулевыми/бесконечными значениями соответственно.

Также заметим, что по аналогии с поиском минимального решения также можно ставить задачу поиска максимального решения. Впрочем, эти две задачи эквивалентны друг другу: достаточно все веса умножить на .

Венгерский алгоритм

Историческая справка

Алгоритм был разработан и опубликован Гарольдом Куном (Harold Kuhn) в 1955 г. Сам Кун дал алгоритму название "венгерский", потому что он был в значительной степени основан на более ранних работах двух венгерских математиков: Денеша Кёнига (Dénes Kőnig) и Эйгена Эгервари (Jenő Egerváry).

В 1957 г. Джеймс Манкрес (James Munkres) показал, что этот алгоритм работает за (строго) полиномиальное время (т.е. за время порядка полинома от , не зависящего от величины стоимостей).

Поэтому в литературе данный алгоритм известен не только как "венгерский", но и как "алгоритм Куна-Манкреса" или "алгоритм Манкреса".

Впрочем, недавно (в 2006 г.) выяснилось, что точно такой же алгоритм был изобретён за век до Куна немецким математиком Карлом Густавом Якоби (Carl Gustav Jacobi). Дело в том, что его работа "About the research of the order of a system of arbitrary ordinary differential equations", напечатанная посмертно в 1890 г., содержавшая помимо прочих результатов и полиномиальный алгоритм решения задачи о назначениях, была написана на латыни, а её публикация прошла незамеченной среди математиков.

Также стоит отметить, что первоначальный алгоритм Куна имел асимптотику , и лишь позже Джек Эдмондс (Jack Edmonds) и Ричард Карп (Richard Karp) (и независимо от них Томидзава (Tomizawa)) показали, каким образом улучшить его до асимптотики .

Построение алгоритма за

Сразу отметим во избежание неоднозначностей, что мы в основном рассматриваем здесь задачу о назначениях в матричной постановке (т.е. дана матрица , и надо выбрать из неё ячеек, находящихся в разных строках и столбцах). Индексацию массивов мы начинаем с единицы, т.е., например, матрица имеет индексы .

Назовём потенциалом два произвольных массива чисел и таких, что выполняется условие:

(Как видно, числа соответствуют строкам, а числа — столбцам матрицы.)

Назовём значением потенциала сумму его чисел:

С одной стороны, легко заметить, что стоимость искомого решения не меньше значения любого потенциала:

(Доказательство. Искомое решение задачи представляет из себя ячеек матрицы, и для каждой из них выполняется условие . Поскольку все элементы находятся в разных строках и столбцах, то, суммируя эти неравенства по всем выбранным , в левой части неравенства получаем , а в правой — , что и требовалось доказать.)

С другой стороны, оказывается, что всегда существует решение и потенциал, на которых это неравенство обращается в равенство . Венгерский алгоритм, описанный ниже, будет конструктивным доказательством этого факта. Пока же лишь обратим внимание на то, что если какое-либо решение имеет стоимость, равную по величине какому-либо потенциалу, то это решение — оптимально .

Зафиксируем некоторый потенциал. Назовём ребро жёстким , если выполняется:

Вспомним об альтернативной постановке задачи о назначениях, с помощью двудольного графа. Обозначим через двудольный граф, составленный только из жёстких рёбер. Фактически, венгерский алгоритм поддерживает для текущего потенциала максимальное по количеству рёбер паросочетание графа : и как только это паросочетание станет содержать рёбер, рёбра этого паросочетания и будут являться искомым оптимальным решением (ведь это будет решение, стоимость которого совпадает с величиной потенциала).

Перейдём непосредственно к описанию алгоритма .

  • В начале алгоритма потенциал полагается равным нулю , и паросочетание полагается пустым.
  • Далее, на каждом шаге алгоритма мы пытаемся, не меняя потенциала, увеличить мощность текущего паросочетания на единицу (напоминаем, паросочетание ищется в графе жёстких рёбер ).

    Для этого фактически используется обычный алгоритм Куна поиска максимального паросочетания в двудольных графах . Напомним здесь этот алгоритм.

    Все рёбра паросочетания ориентируются по направлению от второй доли к первой, все остальные рёбра графа ориентируются в противоположную сторону.

    Напомним (из терминологии поиска паросочетаний), что вершина называется насыщенной, если ей смежно ребро из текущего паросочетания. Вершина, которой не смежно ни одно ребро из текущего паросочетания, называется ненасыщенной. Путь нечётной длины, в котором первое ребро не принадлежит паросочетанию, а для всех последующих рёбер происходит чередование (принадлежит/не принадлежит) — называется увеличивающим путём.

    Из всех ненасыщенных вершин первой доли запускается обход в глубину /в ширину . Если в результате обхода удалось достигнуть ненасыщенной вершины второй доли, то это означает, что мы нашли увеличивающий путь из первой доли во вторую. Если прочередовать рёбра вдоль этого пути (т.е. первое ребро включить в паросочетание, второе исключить, третье включить, и т.д.), то тем самым мы увеличим мощность паросочетания на единицу.

    Если же увеличивающего пути не было, то это означает, что текущее паросочетание — максимально в графе , поэтому в таком случае переходим к следующему пункту.

  • Если на текущем шаге не удалось увеличить мощность текущего паросочетания, то производится некий пересчёт потенциала таким образом, чтобы на следующих шагах появилось больше возможностей для увеличения паросочетания.

    Обозначим через множество вершин первой доли, которые были посещены обходом алгоритма Куна при попытке поиска увеличивающей цепи; через — множество посещённых вершин второй доли.

    Посчитаем величину :

    Эта величина строго положительна.

    (Доказательство. Предположим, что . Тогда существует жёсткое ребро , причём и . Из этого следует, что ребро должно было быть ориентированным от второй доли к первой, т.е. это жёсткое ребро должно входить в паросочетание . Однако это невозможно, т.к. мы не могли попасть в насыщенную вершину , кроме как пройдя по ребру из в . Пришли к противоречию, значит, >.)

    Теперь пересчитаем потенциал таким образом: для всех вершин сделаем , а для всех вершин — сделаем . Получившийся потенциал по-прежнему останется корректным потенциалом.

    (Доказательство. Для этого надо показать, что по-прежнему для всех и выполняется: . Для случаев, когда или — это так, поскольку для них сумма и не изменилась. Когда — неравенство только усилилось. Наконец, для случая — хотя левая часть неравенства и увеличивается, неравенство всё равно сохраняется, поскольку величина , как видно по её определению — это как раз максимальное увеличение, не приводящее к нарушению неравенства.)

    Кроме того, старое паросочетание из жёстких рёбер можно будет оставить, т.е. все рёбра паросочетания останутся жёсткими.

    (Доказательство. Чтобы некоторое жёсткое ребро перестало быть жёстким в результате изменения потенциала, надо, чтобы равенство превратилось в неравенство . Однако левая часть могла уменьшиться только в одном случае: когда . Но раз , то это означает, что ребро не могло быть ребром паросочетания, что и требовалось доказать.)

    Наконец, чтобы показать, что изменения потенциала не могут происходить бесконечно , заметим, что при каждом таком изменении потенциала количество вершин, достижимых обходом, т.е. , строго увеличивается. (При этом нельзя утверждать, что увеличивается количество жёстких рёбер.)

    (Доказательство. Во-первых, любая вершина, которая была достижимой, достижимой и останется. В самом деле, если некоторая вершина достижима, то до неё есть некоторый путь из достижимых вершин, начинающийся в ненасыщенной вершине первой доли; а поскольку для рёбер вида сумма не меняется, то весь этот путь сохранится и после изменения потенциала, что и требовалось доказать. Во-вторых, покажем, что в результате пересчёта потенциала появилась хотя бы одна новая достижимая вершина. Но это почти очевидно, если вернуться к определению : то ребро , на котором был достигнут минимум, теперь станет жёстким, а, значит, вершина станет достижимой благодаря этому ребру и вершине .)

    Таким образом, всего может происходить не более пересчётов потенциала, прежде чем обнаружится увеличивающая цепочка и мощность паросочетания будет увеличена.

Таким образом, рано или поздно будет найден потенциал, которому соответствует совершенное паросочетание , являющееся ответом на задачу.

Если говорить об асимптотике алгоритма, то она составляет , поскольку всего должно произойти увеличений паросочетания, перед каждым из которых происходит не более пересчётов потенциала, каждый из которых выполняется за время .

Реализацию за мы здесь приводить не будем, поскольку она всё равно получится не короче, чем описанная ниже реализация за .

Построение алгоритма за ()

Научимся теперь реализовывать тот же алгоритм за асимптотику (для прямоугольных задач — ).

Ключевая идея: теперь мы будем добавлять в рассмотрение строки матрицы одну за одной , а не рассматривать их все сразу. Таким образом, описанный выше алгоритм примет вид:

Чтобы достичь требуемой асимптотики, надо реализовать шаги 2-3, выполняющиеся для каждой строки матрицы, за время (для прямоугольных задач — за ).

Для этого мы вспомним два факта, доказанных нами выше:

Отсюда вытекают ключевые идеи , позволяющие достичь требуемой асимптотики:

Таким образом, алгоритм принимает такой вид: во внешнем цикле мы добавляем в рассмотрение строки матрицы одну за другой. Каждая строка обрабатывается за время , поскольку при этом могло происходить лишь пересчётов потенциала (каждый — за время ), для чего за время поддерживается массив ; алгоритм Куна суммарно отработает за время (поскольку он представлен в форме итераций, на каждой из которых посещается новый столбец).

Итоговая асимптотика составляет — или, если задача прямоугольна, .

Реализация венгерского алгоритма за ()

Приведённая реализация фактически была разработана Андреем Лопатиным несколько лет назад. Её отличает удивительная лаконичность: весь алгоритм помещается в 30 строк кода .

Данная реализация ищет решение для прямоугольной входной матрицы , где . Матрица хранится в -индексации в целях удобства и краткости кода. Дело в том, что в данной реализации вводятся фиктивные нулевая строка и нулевой столбец, что позволяет написать многие циклы в общем виде, без дополнительных проверок.

Массивы и хранят потенциал. Изначально он нулевой, что верно для матрицы, состоящей из нуля строк. (Отметим, что для данной реализации не важно, имеются или нет в матрице отрицательные числа.)

Массив содержит паросочетание: для каждого столбца он хранит номер соответствующей выбранной строки (или , если пока ничего не выбрано). При этом для удобства реализации полагается равным номеру текущей рассматриваемой строки.

Массив содержит для каждого столбца вспомогательные минимумы, необходимые для быстрого пересчёта потенциала:

Массив содержит информацию о том, где эти минимумы достигаются, чтобы мы впоследствии смогли восстановить увеличивающую цепочку. На первый взгляд кажется, что в массиве для каждого столбца надо хранить номер строки, а также завести ещё один массив: для каждой строки запомнить номер столбца, из которого мы в неё пришли. Однако вместо этого можно заметить, что алгоритм Куна всегда попадает в строки, проходя по ребру паросочетания из столбцов, поэтому номера строк для восстановления цепочки всегда можно взять из паросочетания (т.е. из массива ). Таким образом, для каждого столбца содержит номер предшествующего столбца (или , если такого нет).

Сам алгоритм представляет из себя внешний цикл по строкам матрицы , внутри которого происходит добавление в рассмотрение -ой строки матрицы. Внутренняя часть представляет собой цикл "do-while (p != 0)", который работает, пока не будет найден свободный столбец . Каждая итерация цикла помечает посещённым новый столбец с номером (посчитанным на прошлой итерации; а изначально равным нулю — т.е. стартуем мы с фиктивного столбца), а также новую строку — смежную ему в паросочетании (т.е. ; а изначально при берётся -ая строка). Из-за появления новой посещённой строки нужно соответствующим образом пересчитать массив , заодно мы находим минимум в нём — величину , и в каком столбце этот минимум был достигнут (заметим, что при такой реализации могло оказаться равной нулю, что означает, что на текущем шаге потенциал можно не менять: новый достижимый столбец есть и без того). После этого производится пересчёт потенциала , соответствующее изменение массива . По окончании цикла "do-while" мы нашли увеличивающую цепочку, оканчивающуюся в столбце , "раскрутить" которую можно, пользуясь массивом предков .

Константа — это "бесконечность", т.е. некоторое число, заведомо большее всех возможных чисел во входной матрице .

Vector< int > u (n+ 1 ) , v (m+ 1 ) , p (m+ 1 ) , way (m+ 1 ) ; for (int i= 1 ; i<= n; ++ i) { p[ 0 ] = i; int j0 = 0 ; vector< int > minv (m+ 1 , INF) ; vector< char > used (m+ 1 , false ) ; do { used[ j0] = true ; int i0 = p[ j0] , delta = INF, j1; for (int j= 1 ; j<= m; ++ j) if (! used[ j] ) { int cur = a[ i0] [ j] - u[ i0] - v[ j] ; if (cur < minv[ j] ) minv[ j] = cur, way[ j] = j0; if (minv[ j] < delta) delta = minv[ j] , j1 = j; } for (int j= 0 ; j<= m; ++ j) if (used[ j] ) u[ p[ j] ] + = delta, v[ j] - = delta; else minv[ j] - = delta; j0 = j1; } while (p[ j0] ! = 0 ) ; do { int j1 = way[ j0] ; p[ j0] = p[ j1] ; j0 = j1; } while (j0) ; }

Восстановление ответа в более привычной форме, т.е. нахождение для каждой строки номера выбранного в ней столбца , делается следующим образом:

Vector< int > ans (n+ 1 ) ; for (int j= 1 ; j<= m; ++ j) ans[ p[ j] ] = j;

Стоимость найденного паросочетания можно просто взять как потенциал нулевого столбца (взятый с противоположным знаком). В самом деле, как легко проследить по коду, содержит в себе сумму всех величин , т.е. суммарное изменение потенциала. Хотя при каждом изменении потенциала изменяться могли сразу несколько величин и , суммарное изменение величины потенциала в точности равно , поскольку пока нет увеличивающей цепи, число достижимых строк ровно на единицу больше числа достижимых столбцов (только текущая строка не имеет себе "пары" в виде посещённого столбца):

int cost = - v[ 0 ] ;

Примеры задач

Приведём здесь несколько примеров на решение задачи о назначениях: начиная от совсем тривиальных, и заканчивая менее очевидными задачами:

  • максимальное паросочетание минимального веса (т.е. в первую очередь максимизируется размер паросочетания, во вторую — минимизируется его стоимость).

    Для решения просто строим задачу о назначениях, ставя на месте отсутствующих рёбер число "бесконечность". После этого решаем задачу венгерским алгоритмом, и удаляем из ответа рёбра бесконечного веса (они могли войти в ответ, если у задачи нет решения в виде совершенного паросочетания).

  • Дан двудольный граф, требуется найти в нём паросочетание максимальное паросочетание максимального веса .

    Решение опять же очевидно, только все веса надо умножить на минус единицу (либо в венгерском алгоритме заменить все минимумы на максимумы, а бесконечности — на минус бесконечности).

  • Задача детектирования движущихся объектов по снимкам : было произведено два снимка, по итогам которых было получено два набор координат. Требуется соотнести объекты на первом и втором снимке, т.е. определить для каждой точки второго снимка, какой точке первого снимка она соответствовала. При этом требуется минимизировать сумму расстояний между сопоставленными точками (т.е. мы ищем решение, в котором объекты суммарно прошли наименьший путь).

    Для решения мы просто строим и решаем задачу о назначениях, где в качестве весов рёбер выступают евклидовы расстояния между точками.

  • Задача детектирования движущихся объектов по локаторам : есть два локатора, которые умеют определять не положение объекта в пространстве, а лишь направление на него. С обоих локаторов (расположенных в различных точках) поступила информация в виде таких направлений. Требуется определить положение объектов, т.е. определить предполагаемые положения объектов и соответствующие им пары направлений так, чтобы минимизировать сумму расстояний от объектов до лучей-направлений.

    Решение — опять же, просто строим и решаем задачу о назначениях, где вершинами первой доли являются направлений с первого локатора, вершинами второй доли — направлений со второго локатора, а весами рёбер — расстояния между соответствующими лучами.

  • Покрытие ориентированного ациклического графа путями : дан ориентированный ациклический граф, требуется найти наименьшее число путей (при равенстве — с наименьшим суммарным весом), чтобы каждая вершина графа лежала бы ровно в одном пути.
  • Раскраска дерева . Дано дерево, в котором каждая вершина, кроме листьев, имеет ровно сыновей. Требуется выбрать для каждой вершины некоторый цвет из цветов так, чтобы никакие две смежные вершины не имели одинакового цвета. Кроме того, для каждой вершины и каждого цвета известна стоимость покраски этой вершины в этот цвет, и требуется минимизировать суммарную стоимость.

    Для решения воспользуемся методом динамического программирования. А именно, научимся считать величину , где — номер вершины, — номер цвета, а само значение — это минимальная стоимость раскраски вершины вместе с её потомками, причём сама вершина имеет цвет . Чтобы посчитать такую величину , надо распределить остальные цветов по сыновьям вершины , а для этого надо построить и решить задачу о назначениях (в которой вершины одной доли — цвета, вершины другой доли — вершины-сыновья, а веса рёбер — это значения соответствующих динамик ).

    Таким образом, каждая величина считается с помощью решения задачи о назначениях, что в итоге даёт асимптотику .

  • Если в задаче о назначениях веса заданы не у рёбер, а у вершин, причём только у вершин одной доли , то можно обойтись без венгерского алгоритма, а достаточно лишь отсортировать вершины по весу и запустить обычный алгоритм Куна (более подробно см. ).
  • Рассмотрим следующий частный случай . Пусть каждой вершине первой доли приписано некоторое число , а каждой вершине второй доли — . Пусть вес любого ребра равен (числа и нам известны). Решить задачу о назначениях.

    Для решения без венгерского алгоритма рассмотрим сначала случай, когда в обеих долях по две вершины. В этом случае, как нетрудно убедиться, выгодно соединять вершины в обратном порядке: вершину с меньшей соединить с вершиной с большей . Это правило легко обобщить на произвольное количество вершин: надо отсортировать вершины первой доли в порядке увеличения , второй доли — в порядке уменьшения , и соединять вершины попарно в таком порядке. Таким образом, мы получаем решение с асимптотикой .

  • Задача о потенциалах . Дана матрица . Требуется найти два массива и такие, что для любых и выполняется , но при этом сумма элементов массивов и максимальна.

    Зная венгерский алгоритм, решение этой задачи не составит никакого труда: венгерский алгоритм как раз находит именно такой потенциал , который удовлетворяет условию задачи. С другой стороны, без знания венгерского алгоритма решить такую задачу представляется почти невозможным.

Литература

  • Harold Kuhn. The Hungarian Method for the Assignment Problem
  • James Munkres. Algorithms for Assignment and Transportation Problems


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: