Что такое hash. Хэш — что это такое? Определение, значение, перевод

В рамках данной статьи, я расскажу вам что такое Хэш , зачем он нужен, где и как применяется, а так же наиболее известные примеры.

Многие задачи в области информационных технологий весьма критичны к объемам данных. Например, если нужно сравнить между собой два файла размером по 1 Кб и два файла по 10 Гб, то это совершенно разное время. Поэтому алгоритмы, позволяющие оперировать более короткими и емкими значениями, считаются весьма востребованными.

Одной из таких технологий является Хэширование, которое нашло свое применение при решении массы задач. Но, думаю вам, как обычному пользователю, все еще непонятно, что же это за зверь такой и для чего он нужен. Поэтому далее я постараюсь объяснить все наиболее простыми словами.

Примечание : Материал рассчитан на обычных пользователей и не содержит многих технических аспектов, однако для базового ознакомления его более, чем достаточно.

Что такое Хэш или Хэширование?

Начну с терминов.

Хэш-функция, Функция свертки - это специального вида функция, которая позволяет преобразовывать произвольной длины тексты к коду фиксированной длины (обычно, короткая цифро-буквенная запись).

Хэширование - это сам процесс преобразования исходных текстов.

Хэш, Хеш-код, Значение Хэш, Хэш-сумма - это выходное значение Хэш-функции, то есть полученный блок фиксированный длины.

Как видите, у терминов несколько образное описание, из которого сложно понять для чего это все нужно. Поэтому сразу приведу небольшой пример (об остальных применениях расскажу чуть позже). Допустим, у вас есть 2 файла размером 10 Гб. Как можно быстро узнать какой из них нужный? Можно использовать имя файла, но его легко переименовать. Можно смотреть даты, но после копирования файлов даты могут быть одинаковыми или в иной последовательности. Размер, как сами понимаете, мало чем может помочь (особенно, если размеры совпадают или вы не смотрели точные значения байтов).

Вот тут-то и нужен этот самый Хэш, который представляет собой короткий блок, формирующийся из исходного текста файла. У этих двух файлов по 10 Гб будет два разных, но коротких Хэш-кода (что-то вроде "ACCAC43535" и "BBB3232A42"). Используя их, можно будет быстро узнать нужный файл, даже после копирования и смены имен.

Примечание : В связи с тем, что Хэш в компьютером мире и в интернете весьма известное понятие, то нередко все то, что имеет отношение к Хэшу, сокращают до этого самого слова. Например, фраза "у меня используется Хэш MD5" в переводе означает, что на сайте или где-то еще используется алгоритм хэширования стандарта MD5.

Свойства Хеш-функций

Теперь, расскажу о свойствах Хэш-функций, чтобы вам было легче понять где применяется и для чего нужно Хэширование. Но, сначала еще одно определение.

Коллизия - это ситуация, когда для двух разных текстов получается одна и та же Хэш-сумма. Как сами понимаете, раз блок фиксированной длины, то он имеет ограниченное число возможных значений, а следовательно возможны повторы.

А теперь к самим свойствам Хэш-функций:

1. На вход может подаваться текст любого размера, а на выходе получается блок данных фиксированной длины. Это следует из определения.

2. Хэш-сумма одних и тех же текстов должна быть одинаковой. В противном случае, такие функции просто бесполезны - это аналогично случайному числу.

3. Хорошая функция свертки должна иметь хорошее распределение. Согласитесь, что если размер выходного Хэша, к примеру, 16 байт, то если функция возвращает всего 3 разных значения для любых текстов, то толку от такой функции и этих 16 байт никакого (16 байт это 2^128 вариантов, что примерно равно 3,4 * 10^38 степени).

4. Как хорошо функция реагирует на малейшие изменения в исходном тексте. Простой пример. Поменяли 1 букву в файле размером 10 Гб, значение функции должно стать другим. Если же это не так, то применять такую функцию весьма проблематично.

5. Вероятность возникновения коллизии. Весьма сложный параметр, рассчитываемый при определенных условиях. Но, суть его в том, что какой смысл от Хэш-функции, если полученная Хэш-сумма будет часто совпадать.

6. Скорость вычисления Хэша. Какой толк от функции свертки, если она будет долго вычисляться? Никакой, ведь тогда проще данные файлов сравнивать или использовать иной подход.

7. Сложность восстановления исходных данных из значения Хэша. Эта характеристика больше специфическая, нежели общая, так как не везде требуется подобное. Однако, для наиболее известных алгоритмов эта характеристика оценивается. Например, исходный файл вы вряд ли сможете получить из этой функции. Однако, если имеет место проблема коллизий (к примеру, нужно найти любой текст, который соответствует такому Хэшу), то такая характеристика может быть важной. Например, пароли, но о них чуть позже.

8. Открыт или закрыт исходный код такой функции. Если код не является открытым, то сложность восстановления данных, а именно криптостойкость, остается под вопросом. Отчасти, это проблема как с шифрованием .

Вот теперь можно переходить к вопросу "а для чего это все?".

Зачем нужен Хэш?

Основные цели у Хэш-функций всего три (вернее их предназначения).

1. Проверка целостности данных. В данном случае все просто, такая функция должна вычисляться быстро и позволять так же быстро проверить, что, к примеру, скачанный из интернета файл не был поврежден во время передачи.

2. Рост скорости поиска данных. Фиксированный размер блока позволяет получить немало преимуществ в решении задач поиска. В данном случае, речь идет о том, что, чисто технически, использование Хэш-функций может положительно сказываться на производительности. Для таких функций весьма важное значение представляют вероятность возникновения коллизий и хорошее распределение.

3. Для криптографических нужд. Данный вид функций свертки применяется в тех областях безопасности, где важно чтобы результаты сложно было подменить или где необходимо максимально усложнить задачу получения полезной информации из Хэша.

Где и как применяется Хэш?

Как вы, вероятно, уже догадались Хэш применяется при решении очень многих задач. Вот несколько из них:

1. Пароли обычно хранятся не в открытом виде, а в виде Хэш-сумм, что позволяет обеспечить более высокую степень безопасности. Ведь даже если злоумышленник получит доступ к такой БД, ему еще придется немало времени потратить, чтобы подобрать к этим Хэш-кодам соответствующие тексты. Вот тут и важна характеристика "сложность восстановления исходных данных из значений Хэша".

Примечание : Советую ознакомиться со статьей пара советов для повышения уровня безопасности паролей .

2. В программировании, включая базы данных. Конечно же, чаще всего речь идет о структурах данных, позволяющих осуществлять быстрый поиск. Чисто технический аспект.

3. При передачи данных по сети (включая Интернет). Многие протоколы, такие как TCP/IP, включают в себя специальные проверочные поля, содержащие Хэш-сумму исходного сообщения, чтобы если где-то произошел сбой, то это не повлияло на передачу данных.

4. Для различных алгоритмов, связанных с безопасностью. Например, Хэш применяется в электронных цифровых подписях.

5. Для проверки целостности файлов. Если обращали внимание, то нередко в интернете можно встретить у файлов (к примеру, архивы) дополнительные описания с Хэш-кодом. Эта мера применяется не только для того, чтобы вы случайно не запустили файл, который повредился при скачивании из Интернета, но и бывают просто сбои на хостингах . В таких случаях, можно быстро проверить Хэш и если требуется, то перезалить файл.

6. Иногда, Хэш-функции применяются для создания уникальных идентификаторов (как часть). Например, при сохранении картинок или просто файлов, обычно используют Хэш в именах совместно с датой и временем. Это позволяет не перезаписывать файлы с одинаковыми именами.

На самом деле, чем дальше, тем чаще Хэш-функции применяются в информационных технологиях. В основном из-за того, что объемы данных и мощности самых простых компьютеров сильно возрасли. В первом случае, речь больше о поиске, а во втором речь больше о вопросах безопасности.

Известные Хэш-функции

Самыми известными считаются следующие три Хэш-функции.

Он же хеш «хэш-функция»



, он же хеш , это английское слово hash, которое в русском языке чаще всего употребляется в составных словах «хэш-функция» , «хэш-сумма» или «хэш-алгоритм». Давайте попробуем разобраться, что это такое и для чего оно нужно.

Понятие «хэширование» означает детерминистское (однозначное и точно известное) вычисление набора символов фиксированной длины на основе входных данных произвольной длины. При этом изменение хотя бы одного символа в исходных данных гарантирует (с вероятностью, близкой к 100%), что и полученная фиксированная строка будет иной. Можно сказать, что хэширование это «снятие отпечатка» с большого набора данных.

Для чего всё это нужно? Давайте рассмотрим пример: вы скачали большой файл (положим, zip-архив) и желаете убедиться, что в нём нет ошибок. Вы можете узнать «хэш-сумму» (тот самый отпечаток) этого файла и сверить его с опубликованным на сайте. Если строки хэш-сумм различаются, то файл однозначно «битый».

Другой пример: чтобы обезопасить данные пользователей, банк не должен хранить их пароли такими, какие они есть, в своей базе данных. Вместо этого банк хранит хэш-суммы этих паролей и каждый раз при вводе пароля вычисляет его хэш-сумму и сверяет её с хранимой в базе. И тут возникает резонный вопрос о возможных «коллизиях», то есть одинаковых результатах хэширования разных паролей. Хорошая хэш-функция должна сводить коллизии к абсолютному минимуму, а для этого её нужно сделать довольно сложной и запутанной.


Находится в списке.

Для решения задачи поиска необходимого элемента среди данных большого объема был предложен алгоритм хеширования (hashing – перемешивание), при котором создаются ключи, определяющие данные массива и на их основании данные записываются в таблицу, названную хеш-таблицей . Ключи для записи определяются при помощи функции i = h (key ) , называемой хеш-функцией . Алгоритм хеширования определяет положение искомого элемента в хеш-таблице по значению его ключа, полученного хеш-функцией.

Понятие хеширования– это разбиение общего (базового) набора уникальных ключей элементов данных на непересекающиеся наборы с определенным свойством.

Возьмем, например, словарь или энциклопедию. В этом случае буквы алфавита могут быть приняты за ключи поиска, т.е. основным элементом алгоритма хеширования является ключ (key ). В большинстве приложений ключ обеспечивает косвенную ссылку на данные.

Фактически хеширование – это специальный метод адресации данных для быстрого поиска нужной информации по ключам .

Если базовый набор содержит N элементов, то его можно разбить на 2 N различных подмножеств.

Хеш-таблица и хеш-функции

Функция, отображающая ключи элементов данных во множество целых чисел (индексы в таблице – хеш-таблица ), называется функцией хеширования , или хеш-функцией :

i = h (key );

где key – преобразуемый ключ, i – получаемый индекс таблицы, т.е. ключ отображается во множество целых чисел (хеш-адреса ), которые впоследствии используются для доступа к данным.

Однако хеш-функция для нескольких значений ключа может давать одинаковое значение позиции i в таблице. Ситуация, при которой два или более ключа получают один и тот же индекс (хеш-адрес), называется коллизией при хешировании.

Хорошей хеш-функцией считается такая функция, которая минимизирует коллизии и распределяет данные равномерно по всей таблице, а совершенной хеш-функцией – функция, которая не порождает коллизий:

Разрешить коллизии при хешировании можно двумя методами:

– методом открытой адресации с линейным опробыванием;

– методом цепочек.

Хеш-таблица

Хеш-таблица представляет собой обычный массив с необычной адресацией, задаваемой хеш-функцией.

Хеш-структуру считают обобщением массива, который обеспечивает быстрый прямой доступ к данным по индексу.

Имеется множество схем хеширования, различающихся как выбором удачной функции h (key ), так и алгоритма разрешения конфликтов. Эффективность решения реальной практической задачи будет существенно зависеть от выбираемой стратегии.

Примеры хеш-функций

Выбираемая хеш-функция должна легко вычисляться и создавать как можно меньше коллизий, т.е. должна равномерно распределять ключи на имеющиеся индексы в таблице. Конечно, нельзя определить, будет ли некоторая конкретная хеш-функция распределять ключи правильно, если эти ключи заранее не известны. Однако, хотя до выбора хеш-функции редко известны сами ключи, некоторые свойства этих ключей, которые влияют на их распределение, обычно известны. Рассмотрим наиболее распространенные методы задания хеш-функции.

Метод деления . Исходными данными являются – некоторый целый ключ key и размер таблицы m . Результатом данной функции является остаток от деления этого ключа на размер таблицы. Общий вид функции:

int h(int key, int m) {

return key % m; // Значения

Для m = 10 хеш-функция возвращает младшую цифру ключа.

Для m = 100 хеш-функция возвращает две младшие цифры ключа.

Аддитивный метод , в котором ключом является символьная строка. В хеш-функции строка преобразуется в целое суммированием всех символов и возвращается остаток от деления на m (обычно размер таблицы m = 256).

int h(char *key, int m) {

Коллизии возникают в строках, состоящих из одинакового набора символов, например, abc и cab .

Данный метод можно несколько модифицировать, получая результат, суммируя только первый и последний символы строки-ключа.

int h(char *key, int m) {

int len = strlen(key), s = 0;

if(len < 2) // Если длина ключа равна 0 или 1,

s = key; // возвратить key

s = key + key;

В этом случае коллизии будут возникать только в строках, например, abc и amc .

Метод середины квадрата , в котором ключ возводится в квадрат (умножается сам на себя) и в качестве индекса используются несколько средних цифр полученного значения.

Например, ключом является целое 32-битное число, а хеш-функция возвращает средние 10 бит его квадрата:

int h(int key) {

key >>= 11; // Отбрасываем 11 младших бит

return key % 1024; // Возвращаем 10 младших бит

Метод исключающего ИЛИ для ключей-строк (обычно размер таблицы m =256). Этот метод аналогичен аддитивному, но в нем различаются схожие слова. Метод заключается в том, что к элементам строки последовательно применяется операция «исключающее ИЛИ».

В мультипликативном методе дополнительно используется случайное действительное число r из интервала . Если это произведение умножить на размер таблицы m , то целая часть полученного произведения даст значение в диапазоне от 0 до m –1.

int h(int key, int m) {

double r = key * rnd();

r = r – (int)r; // Выделили дробную часть

В общем случае при больших значениях m индексы, формируемые хеш-функцией, имеют большой разброс. Более того, математическая теория утверждает, что распределение получается более равномерным, если m является простым числом.

В рассмотренных примерах хеш-функция i = h (key ) только определяет позицию, начиная с которой нужно искать (или первоначально – поместить в таблицу) запись с ключом key . Поэтому схема хеширования должна включать алгоритм решения конфликтов , определяющий порядок действий, если позиция i = h (key ) оказывается уже занятой записью с другим ключом.

В самых различных отраслях информационных технологий находят свое применение хэш-функции. Они предназначены для того, чтобы, с одной стороны, значительно упростить обмен данными между пользователями и обработку файлов, используемых в тех или иных целях, с другой — оптимизировать алгоритмы обеспечения контроля доступа к соответствующим ресурсам. Хэш-функция — один из ключевых инструментов обеспечения парольной защиты данных, а также организации обмена документов, подписанных с помощью ЭЦП. Существует большое количество стандартов, посредством которых может осуществляться кэширование файлов. Многие из них разработаны российскими специалистами. В каких разновидностях могут быть представлены хэш-функции? Каковы основные механизмы их практического применения?

Что это такое?

Для начала исследуем понятие хэш-функции. Под данным термином принято понимать алгоритм преобразования некоторого объема информации в более короткую последовательность символов посредством математических методов. Практическую значимость хэш-функции можно проследить в самых разных областях. Так, их можно задействовать при проверке файлов и программ на предмет целостности. Также криптографические хеш-функции задействуются в алгоритмах шифрования.

Характеристики

Рассмотрим ключевые характеристики исследуемых алгоритмов. В числе таковых:

  • наличие внутренних алгоритмов преобразования данных исходной длины в более короткую последовательность символов;
  • открытость для криптографической проверки;
  • наличие алгоритмов, позволяющих надежно шифровать изначальные данные;
  • адаптированность к расшифровке при задействовании небольших вычислительных мощностей.

В числе иных важнейших свойств хэш-функции:

  • способность обрабатывать изначальные массивы данных произвольной длины;
  • формировать хешированные блоки фиксированной длины;
  • распределять значения функции на выходе равномерно.

Рассматриваемые алгоритмы также предполагают чувствительность к данным на входе на уровне 1 бита. То есть даже если, условно говоря, в исходном документе изменится хотя бы 1 буква, то хэш-функция будет выглядеть иначе.

Требования к хэш-функциям

Существует ряд требований к хэш-функциям, предназначенным для практического задействования в той или иной области. Во-первых, соответствующий алгоритм должен характеризоваться чувствительностью к изменениям во внутренней структуре хешируемых документов. То есть в хэш-функции должны распознаваться, если речь идет о текстовом файле, перестановки абзацев, переносы. С одной стороны, содержимое документа не меняется, с другой — корректируется его структура, и этот процесс должен распознаваться в ходе хеширования. Во-вторых, рассматриваемый алгоритм должен преобразовывать данные так, чтобы обратная операция (превращение хэша в изначальный документ) была на практике невозможна. В-третьих, хэш-функция должна предполагать задействование таких алгоритмов, которые практически исключают вероятность формирования одинаковой последовательности символов в виде хэш, иными словами — появления так называемых коллизий. Их сущность мы рассмотрим чуть позже.

Отмеченные требования, которым должен соответствовать алгоритм хэш-функции, могут быть обеспечены главным образом за счет задействования сложных математических подходов.

Структура

Изучим то, какой может быть структура рассматриваемых функций. Как мы отметили выше, в числе главных требований к рассматриваемым алгоритмам — обеспечение однонаправленности шифрования. Человек, имеющий в распоряжении только хэш, практически не должен иметь возможности получить на его основе исходный документ.

В какой структуре может быть представлена используемая в подобных целях хеш-функция? Пример ее составления может быть таким: H (hash, то есть, хэш) = f (T (текст), H1), где H1 — алгоритм обработки текста T. Данная функция хеширует T таким образом, что без знания H1 открыть его как полноценный файл будет практически невозможно.

Использование хэш-функций на практике: скачивание файлов

Изучим теперь подробнее варианты использования хэш-функций на практике. Задействование соответствующих алгоритмов может применяться при написании скриптов скачивания файлов с интернет-серверов.

В большинстве случаев для каждого файла определяется некая контрольная сумма — это и есть хэш. Она должна быть одинаковой для объекта, располагающегося на сервере и скачанного на компьютер пользователя. Если это не так, то файл может не открыться либо запуститься не вполне корректно.

Хэш-функция и ЭЦП

Использование хэш-функций распространено при организации обмена документами, содержащими электронно-цифровую подпись. Хэшируется в данном случае подписываемый файл, для того чтобы его получатель мог удостовериться в том, что он подлинный. Хотя формально хэш-функция не входит в структуру электронного ключа, она может фиксироваться во флеш-памяти аппаратных средств, с помощью которых подписываются документы, таких как, например, eToken.

Электронная подпись представляет собой шифрование файла при задействовании открытого и закрытого ключей. То есть к исходному файлу прикрепляется зашифрованное с помощью закрытого ключа сообщение, а проверка ЭЦП осуществляется посредством открытого ключа. Если хэш-функция обоих документов совпадает — файл, находящийся у получателя, признается подлинным, а подпись отправителя распознается как верная.

Хеширование, как мы отметили выше, не является непосредственно компонентом ЭЦП, однако позволяет весьма эффективно оптимизировать алгоритмы задействования электронной подписи. Так, шифроваться может, собственно, только хэш, а не сам документ. В итоге скорость обработки файлов значительно возрастает, одновременно становится возможным обеспечивать более эффективные механизмы защиты ЭЦП, так как акцент в вычислительных операциях в этом случае будет ставиться не на обработке исходных данных, а на обеспечении криптографической стойкости подписи. Хэш-функция к тому же делает возможным подписывать самые разные типы данных, а не только текстовые.

Проверка паролей

Еще одна возможная область применения хеширования — организация алгоритмов проверки паролей, установленных для разграничения доступа к тем или иным файловым ресурсам. Каким образом при решении подобных задач могут быть задействованы те или иные виды хеш-функций? Очень просто.

Дело в том, что на большинстве серверов, доступ к которым подлежит разграничению, пароли хранятся в виде хэшированных значений. Это вполне логично — если бы пароли были представлены в исходном текстовом виде, хакеры, получившие доступ к ним, могли бы запросто читать секретные данные. В свою очередь, на основе хэш вычислить пароль непросто.

Каким образом осуществляется проверка доступа пользователя при задействовании рассматриваемых алгоритмов? Пароль, вводимый пользователем, сверяется с тем, что зафиксирован в хэш-функции, что хранится на сервере. Если значения текстовых блоков совпадают — пользователь получает необходимый доступ к ресурсам.

В качестве инструмента проверки паролей может быть задействована самая простая хэш-функция. Но на практике IT-специалисты чаще всего используют комплексные многоступенчатые криптографические алгоритмы. Как правило, они дополняются применением стандартов передачи данных по защищенному каналу — так, чтобы хакеры не смогли обнаружить либо вычислить пароль, передаваемый с компьютера пользователя на сервера — до того, как он будет сверяться с хешированными текстовыми блоками.

Коллизии хэш-функций

В теории хэш-функций предусмотрено такое явление, как коллизия. В чем его сущность? Коллизия хэш-функции — ситуация, при которой два разных файла имеют одинаковый хэш-код. Это возможно, если длина целевой последовательности символов будет небольшой. В этом случае вероятность совпадения хэша будет выше.

Для того чтобы избежать коллизии, рекомендуется, в частности, задействовать двойной алгоритм под названием "хеширование хеш-функции". Он предполагает формирование открытого и закрытого кода. Многие программисты при решении ответственных задач рекомендуют не применять хэш-функции в тех случаях, когда это необязательно и всегда тестировать соответствующие алгоритмы на предмет наилучшей совместимости с теми или иными ключами.

История появления

Основоположниками теории хэш-функций можно считать исследователей Картера, Вегмана, Симонсона, Биербрауера. В первых версиях соответствующие алгоритмы задействовались в качестве инструментария для формирования уникальных образов последовательностей символов произвольной длины с последующей целью их идентификации и проверки на предмет подлинности. В свою очередь, хэш, в соответствии с заданными критериями, должен был обладать длиной 30-512 бит. В качестве особенно полезного свойства соответствующих функций рассматривалась ее приспособленность для задействования в качестве ресурса быстрого поиска файлов, либо их сортировки.

Популярные стандарты хеширования

Рассмотрим теперь то, в каких популярных стандартах могут быть представлены хэш-функции. В числе таковых — CRC. Данный алгоритм представляет собой циклический код, называемый также контрольной суммой. Данный стандарт характеризуется простотой и в то же время универсальностью — посредством него можно хешировать самый широкий спектр данных. CRC — один из самых распространенных алгоритмов, не относящихся к криптографическим.

В свою очередь, при шифровании достаточно широкое применение находят стандарты MD4 и MD5. Еще один популярный криптографический алгоритм — SHA-1. В частности, он характеризуется размером хэша 160 бит, что больше, чем у MD5 — данный стандарт поддерживает 128 бит. Есть российские стандарты, регулирующие использование хэш-функций, — ГОСТ Р 34.11-94, а также заменивший его ГОСТ Р 34.11-2012. Можно отметить, что величина хэша, предусмотренная алгоритмами, принятыми в РФ, составляет 256 бит.

Стандарты, о которых идет речь, могут быть классифицированы по различным основаниям. Например, есть те, что задействуют алгоритмы блочные и специализированные. Простота вычислений на основе стандартов первого типа часто сопровождается их невысокой скоростью. Поэтому в качестве альтернативы блочным алгоритмам могут задействоваться те, что предполагают меньший объем необходимых вычислительных операций. К быстродействующим стандартам принято относить, в частности, отмеченные выше MD4, MD5, а также SHA. Рассмотрим специфику специальных алгоритмов хеширования на примере SHA подробнее.

Особенности алгоритма SHA

Применение хэш-функций, базирующихся на стандарте SHA, чаще всего осуществляется в области разработки средств цифровой подписи документов DSA. Как мы отметили выше, алгоритм SHA поддерживает хэш 160 бит (обеспечивая так называемый «дайджест» последовательности символов). Изначально рассматриваемый стандарт делит массив данных на блоки по 512 бит. При необходимости, если длина последнего блока не дотягивает до указанной цифры, структура файла дополняется 1 и необходимым количеством нулей. Также в конце соответствующего блока вписывается код, фиксирующий длину сообщения. Рассматриваемый алгоритм задействует 80 логических функций, посредством которых обрабатывается 3 слова, представленные в 32 разрядах. Также в стандарте SHA предусмотрено использование 4 констант.

Сравнение алгоритмов хеширования

Изучим то, как соотносятся свойства хэш-функций, относящихся к разным стандартам, на примере сопоставления характеристик российского стандарта ГОСТ Р 34.11-94 и американского SHA, который мы рассмотрели выше. Прежде всего, следует отметить то, что алгоритм, разработанный в РФ, предполагает осуществление 4 операций по шифрованию в расчете на 1 цикл. Это соответствует 128 раундам. В свою очередь, в течение 1 раунда при задействовании SHA предполагается вычисление порядка 20 команд, при том что всего раундов 80. Таким образом, использование SHA позволяет в течение 1 цикла обработать 512 бит исходных данных. В то время как российский стандарт способен осуществить операции за цикл в 256 бит данных.

Специфика новейшего российского алгоритма

Выше мы отметили, что стандарт ГОСТ Р 34.11-94 был заменен более новым — ГОСТ Р 34.11-2012 «Стрибог». Исследуем его специфику подробнее.

Посредством данного стандарта могут быть реализованы, как и в случае с алгоритмами, рассмотренными выше, криптографические хеш-функции. Можно отметить, что новейший российский стандарт поддерживает блок входных данных в объеме 512 бит. Основные преимущества ГОСТ Р 34.11-2012:

  • высокий уровень защищенности от взлома шифров;
  • надежность, подкрепленная задействованием проверенных конструкций;
  • оперативное вычисление хэш-функции, отсутствие в алгоритме преобразований, которые усложняют конструкцию функции и замедляют вычисление.

Отмеченные преимущества нового российского стандарта криптографического шифрования позволяют задействовать его при организации документооборота, соответствующего самым строгим критериям, что прописаны в положениях регулирующего законодательства.

Специфика криптографических хэш-функций

Рассмотрим более подробно, каким образом исследуемые нами типы алгоритмов могут задействоваться в сфере криптографии. Ключевое требование к соответствующим функциям — стойкость к коллизиям, о которых мы сказали выше. То есть не должны формироваться повторяющиеся значения хеш-функции, если значения эти уже присутствуют в структуре соседствующего алгоритма. Прочим отмеченным выше критериям криптографические функции также должны соответствовать. Понятно, что всегда есть некая теоретическая возможность восстановления исходного файла на основе хэша, особенно если в доступе есть мощный вычислительный инструмент. Однако подобный сценарий предполагается свести к минимуму, благодаря надежным алгоритмам шифрования. Так, вычислить хэш-функцию будет очень сложно, если ее вычислительная стойкость соответствует формуле 2^{n/2}.

Другой важнейший критерий криптографического алгоритма — изменение хэша в случае корректировки изначального массива данных. Выше мы отметили, что стандарты шифрования должны обладать чувствительностью на уровне 1 бита. Так, данное свойство — ключевой фактор обеспечения надежной парольной защиты доступа к файлам.

Итеративные схемы

Изучим теперь то, каким образом могут быть выстроены криптографические алгоритмы хеширования. В числе самых распространенных схем решения данной задачи — задействование итеративной последовательной модели. Она основана на использовании так называемой сжимающей функции, при которой количество входных бит существенно больше, чем тех, что фиксируются на выходе.

Разумеется, сжимающая функция обязана соответствовать необходимым критериям криптостойкости. При интеративной схеме первая операция по обработке потока входных данных делится на блоки, размер которых исчисляется в битах. Соответствующий алгоритм также задействует временные переменные величиной в заданном количестве бит. В качестве первого значения задействуется общеизвестное число, в то время как последующие блоки данных объединяются со значением рассматриваемой функции на выходе. Значением хэша становятся выходные показатели бит для последней итерации, в которых учитывается весь входной поток, включая первое значение. Обеспечивается так называемый «лавинный эффект» хеширования.

Основная сложность, характеризующая реализуемое в виде итерационной схемы хеширование, — хэш-функции иногда сложно построить в том случае, если входной поток не является идентичным размеру блока, на который делится изначальный массив данных. Но в этом случае в стандарте хеширования могут быть прописаны алгоритмы, посредством которых исходный поток может быть расширен тем или иным образом.

В некоторых случаях в процессе обработки данных в рамках итерационной схемы могут быть задействованы так называемые многопроходные алгоритмы. Они предполагают формирование еще более интенсивного «лавинного эффекта». Подобный сценарий предполагает формирование повторных массивов данных, и только во вторую очередь идет расширение.

Блочный алгоритм

Сжимающая функция может быть также основана на блочном алгоритме, посредством которого осуществляется шифрование. Так, с целью повышения уровня безопасности можно задействовать блоки данных, что подлежат хешированию на текущей итерации, в качестве ключа, а результат операций, полученный в ходе выполнения сжимающей функции до этого — в качестве входа. В результате последняя итерация обеспечит выход алгоритма. Безопасность хеширования будет коррелировать с устойчивостью задействуемого алгоритма.

Однако, как мы отметили выше, рассматривая различные виды хеш-функций, блочные алгоритмы часто сопровождаются необходимостью задействования больших вычислительных мощностей. Если они недоступны — скорость обработки файлов может быть недостаточной для решения практических задач, связанных с использованием хэш-функций. Вместе с тем требуемую криптостойкость можно реализовать и при небольшом количестве операций с потоками исходных данных, в частности к решению подобных задач приспособлены рассмотренные нами алгоритмы — MD5, SHA, российские стандарты криптографического шифрования.

Методы сжатия преобразуемых данных на основе однонаправленных ХЭШ-функций

Хэш-функция (hash, hash-function) – это преобразование, получающее из данных произвольной длины некое значение (свертку) фиксированной длины. Простейшими примерами являются контрольные суммы (например, crc32). Бывают:

· криптографические хэши;

· программистские хэши.

Криптографический хэш отличается от программистского следующими двумя свойствами: необратимостью и свободностью от коллизий. Обозначим:

m - исходные данные,

h(m) – хэш-функция от них.

Необратимость означает, что если известно число h0, то трудно подобрать m такое, что h(m) = h0.

Свободность от коллизий означает, что трудно подобрать такие m1 и m2, что m1 не равно m2, но h(m1) = h(m2).

Криптографические хэш-функции разделяются на два класса:

Хэш-функции без ключа (MDC (Modification (Manipulation) Detect Code) - коды),

Хэш-функции c ключом (MАC (Message Authentication Code) - коды).

Хэш-функции без ключа разделяются на два подкласса: слабые хэш-функции, сильные хэш-функции.

Слабой хэш-функцией называется односторонняя функция H(x), удовлетворяющая следующим условиям:

1. аргумент х может быть строкой бит произвольной длины;

2. значение h(x) должно быть строкой бит фиксированной длины;

3. значение h(x) легко вычислить;

4. для любого фиксированного x вычислительно невозможно найти другой x" ≠ x, такой что h(x")=h(x).

Пара x" ≠ x, когда h(x")=h(x) называется коллизией хэш-функции.

Сильной хэш-функцией называется односторонняя функция h(x), удовлетворяющая условиям 1-4 для слабой хэш-функции и свойству 5:

5. вычислительно невозможно найти любую пару x" ≠ x, такую, что h(x")=h(x).
Поскольку из свойств 1-2 следует, что множество определения хэш-функции значительно шире множества значений, то коллизии должны существовать. Свойство 4 требует, чтобы найти их для заданного значения х было практически невозможно. Требование 5 говорит о том, что у сильной хэш-функции вычислительно невозможно вообще найти какую-либо коллизию.

Существует несколько алгоритмов вычисления хэш-функций

MD2 (Message Digest) ­– алгоритм криптографической свертки. Порождает блок длиной 128 бит от сообщения произвольной длины. Общая схема работы MD2:

a. дополнение текста сообщений до длины, кратной 128 бит;

b. вычисление 16-битной контрольной суммы, старшие разряды отбрасываются;

c. добавление контрольной суммы к тексту;

d. повторное вычисление контрольной суммы.

Алгоритм MD2 очень медленный, поэтому чаще применяются MD4, MD5, SHA (Secure Hash Algorithm). Результирующий хэш имеет длину 160 бит.



ГОСТ Р34.11-94. Российский алгоритм. Длина свертки - 256 бит (очень удобно для формирования по паролю ключа для ГОСТ 28147-89).

Национальный институт стандартов и технологий (НИСТ) США на своем веб-сайте http://www.nist.gov/sha/ опубликовал спецификации новых алгоритмов хеширования SHA-256, SHA-384 и SHA-512, цель которых - обеспечить уровень криптостойкости хэша, соответствующий длинам ключей нового стандарта шифрования DES.

Напомним, что n-битный хэш - это отображение сообщения произвольной длины в n-битную псевдослучайную последовательность (хэш-значение). Криптографический хэш, как особая разновидность такой функции, это n-битный хэш, обладающий свойствами «однонаправленности» и «стойкости к коллизиям».

До настоящего времени наиболее популярными хеш-функциями были созданные Райвистом MD4 и MD5, генерирующие хэш-коды длиной n=128, и алгоритм SHA-1, разработанный в АНБ США и порождающий хэш-код длиной n=160.

ГОСТ Р34.10-94 «Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма».



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: