Линейный список как абстрактный тип данных. Абстрактный тип данных "список". Абстрактный тип данных “Дерево двоичного поиска”

Доброго времени суток, хабравчане!

Следующий пост является изложением моих размышлений на тему природы классов и АТД. Эти размышления дополнены интересными цитатами из книг гуру разработки программного обеспечения

Введение

Начнем с того, что плавно подойдем к определению АТД. АТД, в первую очередь, представляет собой тип данных, что означет следущее:
наличие определенных доступных операций над элементами этого типа;
а также данные, относительно которых эти операции выполняются (диапазон значений).

Что же означает слово “абстрактный”? В первую очередь понятие “абстрактность” означет сосредоточение внимания на чем-то важном и, при этом, нам нужно отвлечься от неважных, на данный момент, деталей. Определение абстрактности хорошо раскрыто в книге Гради Буча (“Grady Booch”). Звучит определение так:

Абстракция – это выделение и придание совокупности объектов общих свойств, которые определяют их концепутальные границы и отличают от всех других видов объектов.
Иными словами, абстракция позволяет “пролить свет” на нужные нам данные объектов и, при этом, “затенить” те данные, которые нам не важны.

Итак, что же будет, если слить понятия “тип данных” и “абстракция” воедино? Мы получим тип данных, который предоставляет нам некий набор операций, обеспечивающих поведение объектов этого типа данных, а также этот тип данных будет скрывать те данные, с помощью которых реализовано данное поведение. Отсюда, приходим к понятию АТД:

АТД – это такой тип данных, который скрывает свою внутреннюю реализацию от клиентов.
Удивительно то, что путем применения абстракции АТД позволяет нам не задумываться над низкоуровневыми деталями реализации, а работать с высокоуровневой сущностью реального мира (Стив Макконнелл).

Я считаю, что при разработке АТД сначала нужно определить интерфейс, так как интерфейс не должен зависеть от внутреннего представления данных в АТД. После определения операций, сотставляющих интерфейс, нужно сосредоточиться на данных, которые и будут реализовать заданное поведение АТД. В итоге мы получим некую структуру данных – механизм позволяющий хранить и обрабатывать данные. При этом, прелесть АТД в том, что если нам захочется изменить внутренне представление данных, то нам не придется блуждать по всей программе и менять каждую строку кода, которая зависит от данных, которые мы хотим поменять. АТД инкапсулирует эти данные, что позволяет менять работу объектов этого типа, а не всей программы.

Преимущества АТД

Использование АТД имеет массу преимуществ (все описанные преимущества можно найти в книге Стива Макконнелла «Совершенный код”):

  • Инкапсуляция деталей реализации.
    Это означает, что единожды инкапсулировав детали реализации работы АТД мы предоставляем клиенту интерфейс, при помощи которого он может взаимодействовать с АТД. Изменив детали реализации, представление клиентов о работе АТД не изменится.
  • Снижение сложности.
    Путем абстрагирования от деталей реализации, мы сосредатачиваемся на интерфейсе, т.е на том, что может делать АТД, а не на том как это делается. Более того, АТД позволяет нам работать с сущностью реального мира.
  • Ограничение области использования данных.
    Используя АТД мы можем быть уверены, что данные, представляющие внутреннюю структуру АТД не будут зависеть от других участков кода. При этом реализуется “независимость” АТД.
  • Высокая информативность интерфейса.
    АТД позволяет представить весь интерфес в терминах сущностей предметной области, что, согласитесь, повышает удобочитаемость и информативность интерфейса.

Стив Макконнелл рекомендует представлять в виде АТД низкоуровнеые типы данных, такие как стек или список. Спросите себя, что представляет собой этот список. Если он представляет список сотрудников банка, то и рассматривайте АТД как список сотрудников банка.

Итак, мы разобрались, что такое АТД и назвали преимущества его применения. Теперь стоит отметить, что при разработке классов в ООП следует думать, в первую очередь, об АТД. При этом, как сказал Стив МакКоннелл, Вы программируете не на языке, а с помощью языка. Т.е Вы будете программировать выходя за рамки языка, не ограничиваясь мыслями в терминах массивов или простых типов данных. Вместо этого Вы будете думать на высоком уровне абстракции (например, в терминах электронных таблицах или списков сотрудников). Класс – это не что иное как дополнение и способ реализации концепции АТД. Мы можем даже представить класс в виде формулы:
Класс = АТД + Наследование + Полиморфизм.
Так почему же следут думать об АТД, при разработке классов. Потому что, сперва мы должны решить какие операции будут составлять интерфейс будущего класса, какие данные скрыть, а к каким предоставить открытый доступ. Мы должны подумать об обеспечении высокой информативности интерфейса, легкости оптимизации и проверки кода, а также о том, как бы нам предоставить правильную абстракцию, чтобы можно было думать о сущностях реального мира, а не о низкоуровнеых деталях реализации. Я считаю, что именно после определения АТД мы должны думать о вопросах наследования и полиморфизма.

Стоит отметить, что концепция АТД нашла гирокое применение в ООП, т.к именно эта концепция дополняет ООП и позволяет уменшить сложность программ в быстроменяющемся мире требований к ПО.

Данную статью я писал для того, что бы обратить внимание разработчиков на АТД с целью повышения качества работы и разработки программного обеспечения.

Использованные источники:

Стив Макконнелл – “Совершенный код”;
Роберт Седжвик – «Алгоритмы на Java».

Все встроенные типы данных, являются абстрактными, хотя так их называют редко.

Понятие абстракции

Абстракция - это суждение или представление о некотором объекте, которое содер­жит только свойства, являющиеся существенными в данном контексте. Абстракция по­зволяет объединять экземпляры объектов в группы, внутри которых общие свойства объектов можно не рассматривать, т.е. абстрагироваться от них. Абстракция - это эффективное средство против сложности программирования, позволяющее программисту сосредоточиться на существенных свойствах объектов. Виды абстракций: абст­ракция процесса и абстракция данных .

Абст­ракция процесса. Все подпрограммы являются абстракциями процессов, они определяют способ, с помощью которого программа устанавливает, что необходимо выполнить не­который процесс, без уточнения деталей того, как именно это следует сделать. Возможность абст­рагироваться от многочисленных деталей алгоритма, который выполняется подпрограм­мой, позволяет создавать, читать и понимать большие программы. Любой абстракции данных являются операции, определяемые как абстракции процессов.

Абстракция данных. Абстрактный тип данных - это инкапсуляция, которая содержит только представле­ния данных одного конкретного типа и подпрограммы, которые выполняют операции с данными этого типа. С помощью управления доступом несущественные детали описания типа можно скрыть от внешних модулей, которые используют такой тип. Программные модули, которые используют абстрактный тип данных, могут объявлять переменные это­го типа, даже несмотря на то, что реальное представление типа скрыто от них. Экземп­ляр абстрактного типа данных называется объектом.

Причина создания абстракции типа данных и абстракции процесса - это средство против сложности, способ сделать большие и/или сложные программы более управляемыми.

Инкапсуляция

Разделение программы на синтаксические контейнеры, ко­торые содержат группы логически связанных подпрограмм и данных. Эти синтаксические контейнеры называются модулями, а процесс их разработки- модуляризацией.

Составление программы из наборов подпрограмм и данных, каждый из ко­торых можно компилировать отдельно, без повторной компиляции остальной части про­граммы. Такой набор называется единицей компиляции.

Инкапсуляция - это способ объединения в единое целое подпрограмм и данных, ко­торые они обрабатывают. Инкапсуляция, которая компилируется либо отдельно, либо независимо от других, является основой абстрактной системы и логической организации набора соответствующих вычислений.

Абстрактные типы данных, определяемые пользователем

Абстрактные типы данных, определяемые пользователем, должны иметь следующие свойства:

1) определение типа, позволяющее про­граммным модулям объявлять переменные этого типа, создавая при этом реальное пред­ставление этих переменных в памяти.

2) набор операций для манипуляций с объектами данного типа.

Формальное определение абстрактного типа данных в контексте типов, определенных пользователем: абстрактный тип данных - это тип данных, кото­рый удовлетворяет следующим двум условиям.

    Представление (определение типа) и операции над объектами данного типа содержатся в одной синтаксической единице, переменные данного типа можно создавать и в других модулях.

    Представление объектов данного типа скрыто от программных модулей, использующих этот тип, над объектами можно производить опе­рации, которые прямо предусмотрены в определении типа.

Упаковка представления типа и операций в отдельную син­таксическую единицу, позволяет организо­вывать программу в виде логических единиц, которые можно компилировать отдельно. Во-вторых, появляется возможность модифицировать представления объектов данного типа или операции с ними в отдельной части программы. У сокрытия деталей представ­ления типа есть преимущества. Клиенты не мо­гут "видеть" детали представления объектов, и их код не зависит от это­го представления. Таким образом, представления объектов можно изменять в любое время, не требуя при этом вносить изменения в код клиентов. Другим очевидным и важным преимуществом сокрытия информации является повы­шенная надежность. Клиенты не могут непосредственно изменять основные представле­ния объектов ни преднамеренно, ни случайно, следовательно, возрастает целостность та­ких объектов. Объекты можно изменять только с помощью предусмотренных для этого операций.

Вопросы разработки типов

Должна существовать воз­можность делать имя типа и заголовки подпрограмм видимыми в клиентах абстракции. Это позволяет клиентам объявлять переменные абстрактного типа и манипулировать их значе­ниями. Несмотря на то что имя типа должно быть видимым извне, его определение должно быть скрыто.

Существует очень мало общих встроенных операций, которые можно выполнять с объектами абстрактных типов, в отличие от операций, предусмотренных определением типа. К таким операциям относятся присваивания, а также проверки равенства и неравенства. Если язык не позво­ляет пользователям перегружать операцию присваивания, то она должна быть встроен­ной. Проверки равенства и неравенства в одних случаях должны быть заранее определе­ны, а в других - нет. Разработчик типа должен определить операции для большинства абстрактных типов данных сам.

Языки Smalltalk, C++ и Java непосредственно поддерживают абстрактные типы данных.

Абстрактные типы данных в языке C++

Языки Ada и Modula-2 обеспечивают инкапсуляцию, которая может использоваться при моделировании абстрактных типов данных, в языке C++ введено по­нятие класса, который непосредственно поддерживает абстрактные типы данных. В язы­ке C++ классы - это типы, а пакеты языка Ada и модули языка Modula-2 типами не являют­ся. Пакеты и модули импортируются, позволяя импортирующей программной единице объявлять переменные любого типа, определенного в пакете или модуле. В программе на языке C++ переменные объявляются как сущности, имеющие тип данного класса. Таким образом, классы гораздо больше похожи на встроенные типы, чем пакеты или модули. Программная единица, которая видит пакет в языке Ada или модуль в языке Modula-2, имеет доступ к любым открытым сущностям просто по их именам. Программная едини­ца на языке C++, которая объявляет экземпляр класса, также имеет доступ к любым от­крытым сущностям в этом классе, но только через экземпляр этого класса.

Разработка абстрактных моделей для данных и способов обработки этих данных является важнейшим компонентом в процессе решения задач с помощью компьютера. Примеры этого мы видим и на низком уровне в повседневном программировании (например, при использовании массивов и связных списков, рассмотренных в ), и на высоком уровне при решении прикладных задач (как при решении задачи связности с помощью леса объединение-поиск в "Введение"). В настоящей лекции рассматриваются абстрактные типы данных ( abstract data type , в дальнейшем АТД), позволяющие создавать программы с использованием высокоуровневых абстракций. Абстрактные типы данных позволяют отделять абстрактные (концептуальные) преобразования, которые программы выполняют над данными, от любого конкретного представления структуры данных и любой конкретной реализации алгоритма.

Все вычислительные системы основаны на уровнях абстракции: определенные физические свойства кремния и других материалов позволяют принять абстрактную модель бита, который может принимать двоичные значения 0-1; затем на динамических свойствах значений определенного набора битов строится абстрактная модель машины; далее, на основе принципа работы машины под управлением программы на машинном языке строится абстрактная модель языка программирования; и, наконец, строится абстрактное понятие алгоритма, реализуемое в виде программы на языке C++. Абстрактные типы данных дают возможность продолжать этот процесс дальше и разрабатывать абстрактные механизмы для определенных вычислительных задач на более высоком уровне, чем это обеспечивается системой C++, разрабатывать абстрактные механизмы , ориентированные на конкретные приложения и подходящие для решения задач в многочисленных прикладных областях, а также создавать абстрактные механизмы более высокого уровня, в которых используются эти базовые конструкции. Абстрактные типы данных предоставляют в наше распоряжение расширяемый до бесконечности набор инструментальных средств для решения все новых и новых задач.

С одной стороны, применение абстрактных конструкций освобождает от забот по их детальной реализации; с другой стороны, когда производительность программы важна, необходимо знать затраты на выполнение базовых операций. Мы используем множество базовых абстракций, встроенных в аппаратные средства компьютера и служащих основой для машинных инструкций; реализуем другие абстракции в программном обеспечении; и используем дополнительные абстракции, предоставляемые написанным ранее системным программным обеспечением. Абстрактные конструкции высокого уровня часто создаются на основе более простых конструкций. На всех уровнях действует один и тот же основной принцип: необходимо найти наиболее важные операции в программах и наиболее важные характеристики данных, а затем точно определить те и другие на абстрактном уровне и разработать эффективные конкретные механизмы для их реализации. В настоящей лекции мы рассмотрим множество примеров применения этого принципа.

Для разработки нового уровня абстракции потребуется (1) определить абстрактные объекты, с которыми необходимо манипулировать, и операции , которые должны выполняться над ними; (2) представить данные в некоторой структуре данных и реализовать операции ; (3) и (самое главное) обеспечить, чтобы эти объекты было удобно использовать для решения прикладных задач. Эти пункты применимы и к простым типам данных, так что базовые механизмы для поддержки типов данных, которые были рассмотрены в "Элементарные структуры данных" , можно адаптировать для наших целей. Однако язык C++ предлагает важное расширение механизма структур, называемое классом ( class ). Классы исключительно полезны при создании уровней абстракции и поэтому рассматриваются в качестве основного инструмента, который используется для этой цели в оставшейся части книги.

Определение 4.1. Абстрактный тип данных (АТД) - это тип данных (набор значений и совокупность операций для этих значений), доступ к которому осуществляется только через интерфейс. Программу, которая использует АТД, будем называть клиентом, а программу, содержащую спецификацию этого типа данных - реализацией.

Именно слово только делает тип данных абстрактным: в случае АТД клиентские программы не имеют доступа к значениям данных никаким другим способом, кроме операций, описанных в интерфейсе. Представление этих данных и функции, реализующие эти операции , находятся в реализации и полностью отделены интерфейсом от клиента. Мы говорим, что интерфейс является непрозрачным: клиент не может видеть реализацию через интерфейс .

В программах на языке C++ это различие обычно проводится немного четче, так как проще всего создать интерфейс , включив в него представление данных , но указав, что клиентским программам не разрешен прямой доступ к данным. Другими словами, разработчики клиентских программ могут знать представление данных , но никоим образом не могут его использовать.

В качестве примера рассмотрим интерфейс типа данных для точек ( программа 3.3) из раздела 3.1 "Элементарные структуры данных" . В этом интерфейсе явно объявляется, что точки представлены как структуры, состоящие из пары чисел с плавающей точкой, обозначаемых x и у. Подобное применение типов данных является обычным в больших системах программного обеспечения: мы разрабатываем набор соглашений о представлении данных (а также определяем ряд связанных с ними операций) и делаем эти правила доступными через интерфейс , чтобы ими могли пользоваться клиентские программы, входящие в состав большой системы. Тип данных обеспечивает согласованность всех частей системы с представлением основных общесистемных структур данных. Какой бы хорошей такая стратегия ни была, она имеет один изъян: если необходимо изменить представление данных , то потребуется изменить и все клиентские программы. Программа 3.3 снова дает нам простой пример: одна из причин разработки этого типа данных - удобство работы клиентских программ с точками, и мы ожидаем, что в случае необходимости у клиентов будет доступ к отдельным координатам точки. Но мы не можем перейти к другому представлению данных (скажем, к полярным координатам, или трехмерным координатам, или даже к другим типам данных для отдельных координат) без изменения всех клиентских программ.

В отличие от этого, программа 4.1 содержит реализацию абстрактного типа данных, соответствующего типу данных из программы 3.3, но с использованием класса языка C++, в котором сразу определены как данные, так и связанные с ними операции . Программа 4.2 является клиентской программой, работающей с этим типом данных. Эти две программы выполняют те же самые вычисления, что и программы 3.3 и 3.8. Они иллюстрируют ряд основных свойств классов, которые мы сейчас рассмотрим.

Когда мы пишем в программе определение наподобие int i, мы указываем системе зарезервировать область памяти для данных (встроенного) типа int , к которой можно обращаться по имени i. В языке C++ для подобных сущностей имеется термин объект . При записи в программе такого определения, как POINT p, говорят, что создается объект класса POINT , к которому можно обращаться по имени p. В нашем примере каждый объект содержит два элемента данных, с именами x и у. Как и в случае структур, к ним можно обращаться по именам вроде p.y.

Элементы данных x и у называются данными-членами класса. В классе могут быть также определены функции-члены, которые реализуют операции , связанные с этим типом данных. Например, класс , определенный в программе 4.1, имеет две функции-члена с именами POINT и distance .

Клиентские программы, такие как программа 4.2, могут вызывать функции-члены, связанные с объектом, указывая их имена точно так же, как и имена данных, находящихся в какой-нибудь структуре struct. Например, выражение p.distance(q) вычисляет расстояние между точками p и q (такое же расстояние должен возвращать и вызов q.distance(p) ). Функция POINT() - первая функция в программе 4.1 - является особой функцией-членом, называемой конструктором: у нее такое же имя, как и у класса, и она вызывается тогда, когда требуется создать объект этого класса.

Программа 4.1. Реализация класса POINT (точка)

В этом классе определен тип данных , который состоит из набора значений, представляющих собой "пары чисел с плавающей точкой" (предполагается, что они интерпретируются как точки на декартовой плоскости), а также две функции-члена, определенные для всех экземпляров класса POINT : функция POINT() , которая является конструктором, инициализирующим координаты случайными значениями от 0 до 1, и функция distance(POINT) , вычисляющая расстояние до другой точки. Представление данных является приватным ( private ), и обращаться к нему или модифицировать его могут только функции-члены. Сами функции-члены являются общедоступными ( public ) и доступны для любого клиента. Код можно сохранить, например, в файле с именем POINT .cxx.

#include class POINT { private: float x, у; public: POINT() { x = 1.0*rand()/RAND_MAX; у = 1.0*rand()/RAND_MAX; } float distance(POINT a) { float dx = x-a.x, dy = y-a.y; return sqrt(dx*dx + dy*dy); } };

Программа 4.2. Программа-клиент для класса POINT (нахождение ближайшей точки)

Эта версия программы 3.8 является клиентом, который использует АТД POINT , определенный в программе 4.3. Операция new создает массив объектов POINT (вызывая конструктор POINT () для инициализации каждого объекта случайными значениями координат). Выражение a[i].distance(a[j]) вызывает для объекта a[i] функцию-член distance с аргументом a[j] .

#include #include #include "POINT.cxx" int main(int argc, char *argv) { float d = atof(argv); int i, cnt = 0, N = atoi(argv); POINT *a = new POINT[N]; for (i = 0; i < N; i++) for (int j = i+1; j < N; j++) if (a[i].distance(a[j]) < d) cnt+ + ; cout << cnt << " пар в радиусе " << d << endl; }

Определение POINT p в программе-клиенте приводит к выделению области памяти под новый объект и затем (с помощью функции POINT() ) к присвоению каждому из двух его элементов данных случайного значения в диапазоне от 0 до 1.

Этот стиль программирования, который иногда называется объектно-ориентированным программированием, полностью поддерживается конструкцией class языка C++. Класс можно считать расширением понятия структуры, где не только объединяются данные, но и определяются операции с этими данными. Может существовать много разных объектов, принадлежащих одному классу, но все они подобны в том, что их данные-члены могут принимать один и тот же набор значений, и с этими данными-чле-нами может выполняться одна и та же совокупность операций - в общем, это экземпляры одного и того же типа данных. В объектно-ориентированном программировании объекты предназначены для обработки своих данных-членов (в отличие от использования независимых функций для обработки данных, хранимых в объектах).

Мы рассматриваем описанный выше пример небольшого класса просто чтобы познакомиться с основными чертами классов; поэтому он далеко не полон. В реальном коде для класса точки у нас будет намного больше операций. Например, в программе 4.1 отсутствуют даже операции , позволяющие узнавать значения координат x и y . Как мы увидим, добавление этих и других операций - довольно простая задача. В части 5 мы более подробно рассмотрим классы для точки и других геометрических абстракций, например, линий и многоугольников.

В языке C++ (но не в С) у структур также могут быть связанные с ними функции. Ключевое различие между классами и структурами связано с доступом к информации, который характеризуется ключевыми словами

1.2. Абстрактные типы данных

Большинство понятий, введенных в предыдущем разделе, обычно излагаются в начальном курсе программирования и должны быть вам знакомы. Новыми могут быть только абстрактные типы данных, поэтому сначала обсудим их роль в процессе разработки программ. Прежде всего сравним абстрактный тип данных с таким знакомым понятием, как процедура.

Процедуру, неотъемлемый инструмент программирования, можно рассматривать как обобщенное понятие оператора. В отличие от ограниченных по своим возможностям встроенных операторов языка программирования (сложения, умножения и т.п.), с помощью процедур программист может создавать собственные операторы и применять их к операндам различных типов, не только базовым. Примером такой процедуры-оператора может служить стандартная подпрограмма перемножения матриц.

Другим преимуществом процедур (кроме способности создавать новые операторы) является возможность использования их для инкапсулирования частей алгоритма путем помещения в отдельный раздел программы всех операторов, отвечающих за определенный аспект функционирования программы. Пример инкапсуляции: использование одной процедуры для чтения входных данных любого типа и проверки их корректности. Преимущество инкапсуляции заключается в том, что мы знаем, какие инкапсулированные операторы необходимо изменить в случае возникновения проблем в функционировании программы. Например, если необходимо организовать проверку входных данных на положительность значений, следует изменить только несколько строк кода, и мы точно знаем, где эти строки находятся.

Определение абстрактного типа данных

Мы определяем абстрактный тип данных (АТД) как математическую модель с совокупностью операторов, определенных в рамках этой модели. Простым примером АТД могут служить множества целых чисел с операторами объединения, пересечения и разности множеств. В модели АТД операторы могут иметь операндами не только данные, определенные АТД, но и данные других типов: стандартных типов языка программирования или определенных в других АТД. Результат действия оператора также может иметь тип, отличный от определенных в данной модели АТД. Но мы предполагаем, что по крайней мене один операнд или результат любого оператора имеет тип данных, определенный в рассматриваемой модели АТД.

Две характерные особенности процедур - обобщение и инкапсуляция, - о которых говорилось выше, отлично характеризуют абстрактные типы данных. АТД можно рассматривать как обобщение простых типов данных (целых и действительных чисел и т.д.), точно так же, как процедура является обобщением простых операторов (+,- и т.д.). АТД инкапсулирует типы данных в том смысле, что определение типа и все операторы, выполняемые над данными этого типа, помещаются в один раздел программы. Если необходимо изменить реализацию АТД, мы знаем, где найти и что изменить в одном небольшом разделе программы, и можем быть уверенными, что это не приведет к ошибкам где-либо в программе при работе с этим типом данных. Более того, вне раздела с определением операторов АТД мы можем рассматривать типы АТД как первичные типы, так как объявление типов формально не связано с их реализацией. Но в этом случае могут возникнуть сложности, так как некоторые операторы могут инициироваться для более одного АТД и ссылки на эти операторы должны быть в разделах нескольких АТД.

Для иллюстрации основных идей, приводящих к созданию АТД, рассмотрим процедуру greedy из предыдущего раздела (листинг 1.3), которая использует простые операторы над данными абстрактного типа LIST (список целых чисел). Эти операторы должны выполнить над переменной newclr типа LIST следующие действия.

1. Сделать список пустым.

2. Выбрать первый элемент списка и, если список пустой, возвратить значение null.

3. Выбрать следующий элемент списка и возвратить значение null, если следующего элемента нет.

4. Вставить целое число в список.

Возможно применение различных структур данных, с помощью которых можно эффективно выполнить описанные действия. (Подробно структуры данных будут рассмотрены в теме 2.) Если в листинге 1.3 заменить соответствующие операторы выражениями

MAKENULL(newcJr);

w:= FIRST(newcJr);

w:= NEXT(newcfr);

INSERT(v, newclr);

то будет понятен один из основных аспектов (и преимуществ) абстрактных типов данных. Можно реализовать тип данных любым способом, а программы, использующие объекты этого типа, не зависят от способа реализации типа - за это отвечают процедуры, реализующие операторы для этого типа данных.

Вернемся к абстрактному типу данных GRAPH (Граф). Для объектов этого типа необходимы операторы, которые выполняют следующие действия.

1. Выбирают первую незакрашенную вершину.

2. Проверяют, существует ли ребро между двумя вершинами.

3. Помечают вершину цветом.

4. Выбирают следующую незакрашенную вершину.

Очевидно, что вне поля зрения процедуры greedy остаются и другие операторы, такие как вставка вершин и ребер в граф или помечающие все вершины графа как незакрашенные. Различные структуры данных, поддерживающие этот тип данных, будут рассмотрены в темах 6 и 7.

Необходимо особо подчеркнуть, что количество операторов, применяемых к объектам данной математической модели, не ограничено. Каждый набор операторов определяет отдельный АТД. Вот примеры операторов, которые можно определить для абстрактного типа данных SET (Множество).

1. MAKENULL(A), Эта процедура делает множество А пустым множеством.

2. UNION(A, В, С). Эта процедура имеет два "входных" аргумента, множества А и В, и присваивает объединение этих множеств "выходному" аргументу - множеству С.

3. SIZE(A). Эта функция имеет аргумент-множество А и возвращает объект целого типа, равный количеству элементов множества А. Термин реализация АТД подразумевает следующее: перевод в операторы языка программирования объявлений, определяющие переменные этого абстрактного типа данных, плюс процедуры для каждого оператора, выполняемого над объектами АТД. Реализация зависит от структуры данных, представляющих АТД. Каждая структура данных строится на основе базовых типов данных применяемого языка программирования, используя доступные в этом языке средства структурирования данных. Структуры массивов и записей - два важных средства структурирования данных, возможных в языке Pascal. Например, одной из возможных реализаций переменной S типа SET может служить массив, содержащий элементы множества S.

Одной из основных причин определения двух различных АТД в рамках одной модели является то, что над объектами этих АТД необходимо выполнять различные действия, т.е. определять операторы разных типов. В этом конспекте рассматривается только несколько основных математических моделей, таких как теория множеств и теория графов, но при различных реализациях на основе этих моделей определенных АТД будут строиться различные наборы операторов.

В идеале желательно писать программы на языке, базовых типов данных и операторов которого достаточно для реализации АТД. С этой точки зрения язык Pascal не очень подходящий язык для реализации различных АТД, но, с другой стороны, трудно найти иной язык программирования, в котором можно было бы так непосредственно декларировать АТД. Дополнительную информацию о таких языках программирования см. в библиографических примечаниях в конце темы.

Абстрактным принято называть тип данных, в явном виде не имеющийся в языке программирования, в этом смысле это понятие относительное - тип данных, отсутствующий в одном языке программирования, может присутствовать в другом.

Абстрактный тип данных (АТД) определяется независимо от способа его реализации:

    множеством возможных значений этого типа,

    и набором операций со значениями этого типа.

Использование АТД может быть ограничено этапом разработки программного обеспечения, но для его явного использования в программе надо иметь его реализацию на основе уже имеющихся (и ранее реализованных) типов данных в языке программирования:

    способ представления значений этого типа,

    и реализацию операций со значениями этого типа.

АТД не является предопределенным в языке программирования, и даже более того – операции конструирования таких типов, предопределенные в языке, перекладывают на разработчика-программиста вопрос о способе представления значений такого типа и реализации операций со значениями этого типа. А потому, для таких типов данных вопрос о выборе определений и способов реализации операций вида конструктор (значений и хранилищ данных) такого типа, селектор и модификатор компонентов (значений и хранилищ данных) такого типа возлагается на разработчика-программиста.

В концепции АТД особый статус имеют понятия интерфейс , открытый пользователю, и реализация , скрытая от него. Особая роль этих понятий в концепции АТД связана с основополагающим положением о независимости понятия АТД от способа его реализации.

В современных «практических языках программирования» для конструирования АТД обычно используется предопределенная операция конструирования типов class , которая дает разработчику-программисту не только средства группировки данных и операций (с этими данными) в единое целое, но и средства инкапсуляции, наследования и полиморфизма для управления способами конструирования и доступа к таким данным. Отметим, что класс описывает одну возможную реализацию АТД, отображение класса в АТД выражается функцией абстракции, но обратное отношение, обычно, не является функциональным, реализаций одного и того же АТД может быть несколько.

В исследованиях по абстрактным типам данных уже на раннем этапе была осознана важная роль понятия «параметризация типа ». Действительно, например АТД «Стек» не зависит от типа элементов стека, но реализовать этот АТД указанием на «элементы какого-то одинакового типа» невозможно. В язык программирования Ada соответствующие средства конструирования параметризованных типов данных были включены изначально, а в современных «практических языках программирования» какие средства появились только со времен появления разработки по STL-библиотеке . На сегодня понятие «обобщенное программирование» занимает значимое положение в практическом программировании благодаря включению в «практические языки программирования» средств конструирования параметризованных типов данных (шаблоны, template , generic) .

Всё вышесказанное означает, что с методологической и теоретической точки зрения необходимо более детальное точное определение понятия «абстрактный тип данных». В теории понятие «абстрактный тип данных» обычно определяется как многосортная (многоосновная) алгебраическая система , в которой дополнительно к множеству возможных значений (носителю) и набору операций над такими значениями выделены понятия:

    Сорт и сигнатура – эти понятия позволяют расклассифицировать и элементы носителя и операции с ними по их типам (для операций - по типам их аргументов и возвращаемого значения).

    Предикаты – отношения на элементах носителя. Это позволяет определять область возможных значений наложением ограничений (требований) на допустимые значения, а также в естественной трактовке работать с произвольными логическими выражениями, не принуждая интерпретировать их как функции принадлежности для множеств или как многозначные операции.

На такой основе можно рассматривать абстрактные типы данных с единой целостной логико-алгебраической точки зрения, включая вопросы о конструкторах (типов и значений), селекторах и модификаторах свойств для объектов такого типа .

Понятия «структура данных» и «абстрактный тип данных» в чем-то очень близкие. Можно конечно считать, что эти понятия - просто два взгляда на одно и то же. Способ представления значений АТД всегда основан на некоторой структуре данных, менее или более сложной, и реализация операций с такими значениями естественно зависит от этой выбранной структуры данных. С другой стороны, заинтересовавшую нас структуру данных при большом желании мы всегда можем оформить как АТД.

Но все же мы будем различать эти два понятия, учитывая:

    Абстрактный тип данных - подразумевает определенный уровень абстрагирования с целью фиксации прикладного (предметно-ориентированного) типа данных безотносительно к способам его реализации, и возможно включения этого типа данных в прикладную библиотеку, ну хотя бы для конкретной разработки конкретной программной системы. АТД может иметь несколько альтернативных реализаций, основанных на различных структурах данных.

    Структура данных - скорее некоторая схема организации данных и управления ими, которая предполагает соответствующие конкретизации при ее использовании в конкретных ситуациях при решении конкретных задач.

К абстрактным типам данных прежде всего естественно относятся математические базовые алгебраические системы – последовательности, множества, отношения и отображения (функциональные отношения, функции) . Но в программировании на переднем плане не исследование общих свойств этих математических понятий, а возможности их использования в разработке моделей решения задач предметной области, алгоритмов решения этих задач и эффективной реализации разработанных алгоритмов. А потому в программировании в виде АТД обычно оформляются с одной стороны ограниченные варианты этих базовых алгебраических систем, а с другой стороны расширенные специализированными наборами операций, представляющими прагматический интерес с точки зрения области применения.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: