Типы регуляторов напряжения. Основные параметры регулятора напряжения. Как работает электронный регулятор напряжения и инструкция по его установке

Электрооборудование любого автомобиля включает в себя генератор - устройство, преобразующее механическую энергию, получаемую от двигателя, в электрическую. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.

Что такое регулятор напряжения генератора?

Поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции - защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.

Принцип действия регулятора напряжения

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить увеличивается.

Проверка регулятора напряжения

Прежде чем проверить регулятор напряжения, нужно убедиться, что проблема кроется именно в нём, а не в других элементах генератора (слабо натянут ремень, окислилась масса и т.д.), для этого нужно проверить сам генератор (Как проверить генератор?). После этого вам нужно снять регулятор напряжения. Процесс демонтажа регулятора описан в статье «как снять регулятор напряжения?». В двух словах скажу, что сначала нужно снять минусовую клемму, снять все провода с генератора, снять пластиковый кожух с генератора, затем открутить и вынуть регулятор напряжения в сборе вместе с щётками.

Давайте перейдём непосредственно к проверке регулятора напряжения. Проверять регулятор напряжения нужно обязательно в сборе с щёткодержателями – т.к. в случае обрыва цепи щёток и регулятора напряжения, мы сразу это заметим. Перед проверкой, обратите внимание на состояние щёток: если они обломаны или их длина короче 5мм, неподвижны и не пружинят, – то их нужно заменить. Для проверки нам понадобится:

– провода;

– аккумулятор автомобильный;

– лампочка на 12в 1-3Вт;

– две обычные пальчиковые батарейки.

Чтобы проверить регулятор напряжения, нам нужно будет построить две схемы: К щёткам подключаем лампочку, К выводам Б и В подключаем «+» от аккумулятора, «-» аккумулятора закрепляем на массу регулятора. Делаем ту же схему, но добавляем последовательно две пальчиковые батарейки. Вывод из всего вышесказанного таков. Исправный регулятор напряжения: в первой схеме лампа горит, во второй схеме лампа не горит, т.к. напряжение выше 14,7в и подача напряжения на щётки должна быть прекращена. Неисправный регулятор напряжения: в обоих случая лампа горит, значит в регуляторе пробой. Лампа не горит вообще – значит, отсутствует контакт между щётками и регулятором или обрыв цепи в регуляторе.

Трехуровневые регуляторы напряжения

Сначала узнаем, для чего нужен этот регулятор. Автомобильный генератор во время движения и работы двигателя должен подпитывать аккумуляторную батарею. Тем самым восстанавливается ёмкость аккумулятора, когда он разряжается во время стоянки. Если мы ездим каждый день, то аккумулятор почти не разряжается, если он в исправном состоянии.

Хуже приходиться аккумулятору, когда машина долго стоит без движения, ведь его энергия постепенно уходит на поддержание работы авто сигнализации. Ещё хуже дела обстоят зимой, когда при отрицательных температурах аккумуляторная батарея разряжается очень быстро. А если вы ездите помалу и не часто, то аккумулятор не заряжается полностью во время движения и может полностью разрядится как-то утром.

Справиться с вышеуказанной проблемой, призван трехуровневый регулятор напряжения. У него три положения работы: это максимальное (выдаёт напряжение на генераторе 14,0-14,2 В), нормальное (13,6-13,8 В) и минимальное (13,0-13,2 В). Как мы знаем из статьи про проверку работоспособности аккумулятора, нормальное напряжение при заведённом двигателе должно быть от 13,2-13,6 В. Это означает, что генератор работает в нормальном режиме и АКБ заряжается в полном объёме.

Это соответствует среднему (нормальному) положению регулятора напряжения. А вот зимой, желательно повысить напряжение до 13,8-14,0 В, т.к. аккумулятор быстрее разряжается при отрицательных температурах. Это делается простым переводом рычажка на регуляторе напряжения. Так будет обеспечена лучшая зарядка АКБ зимой при работающем двигателе.

Летом, особенно когда жара превышает +25 градусов и выше - желательно понизить напряжение генератора до 13,0-13,2 В. Зарядка от этого не пострадает, но генератор не будет “выкипать”, т.е. не будет терять свою номинальную ёмкость и не сокращать ресурс.

Как снять или заменить регулятор напряжения?

Перед заменой регулятора напряжения, обязательно проверьте генератор в целом (Как проверить генератор?). Регулятор напряжения нужно менять, если напряжение под нагрузкой бортовой сети (включены дальний, обогрев зеркал, печка) меньше 13в. Так же регулятор напряжения может стать причиной высокого напряжения (выше 14,7в). Но, как писалось выше, перед снятием регулятора нужно проверить сам генератор, ознакомиться с другими возможными неисправностями (например слабо натянут ремень генератора), и только потом приступать к замене регулятора напряжения. Так же данная статья вам понадобится для замены щёток генератора, т.к. щётки и регулятор напряжения устанавливаются на генератор в сборе.


Итак, как же снять регулятор напряжения? Открываем капот, снимаем минусовую клемму аккумулятора, находим генератор, отсоединяем колодку проводов «D».

- Снимаем защитный резиновый колпачок с наконечников проводов вывода «+». Откручиваем гайку крепления этих проводов, снимаем их с блока генератора.

Находим регулятор напряжения, и крестовой отверткой откручиваем его крепления.

Вынимаем регулятор напряжения в сборе с щётками, и отключаем от него колодку проводов.

Устанавливаем регулятор напряжения строго в обратной последовательности. Стоит отметить, что в последнее время, многие автолюбители стали пользоваться трёхуровневым регулятором напряжения, для того, чтобы избавиться от просадок напряжения в бортовой сети.

Подписывайтесь на наши ленты в

В настоящее время задачи регулирования напряжения получили материальную основу в виде регулирующих и компенсирующих устройств. Постоянство напряжения в каждой точке сети можно обеспечить применением локальных регуляторов в электрических цепях. Таким образом возникает вопрос о создании локальных систем автоматического регулирования напряжения в электрической сети.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ВВЕДЕНИЕ 3

Описание прибора 4

Основное назначение и область применения 5

Виды регуляторов напряжений 6

регуляторы переменного напряжения на основе тиристоров 7

регуляторы переменного напряжения на основе магнитных усилителей 8

регуляторы переменного напряжения на основе транзисторов 9

синхронный компенсатор: назначение, принцип работы 10

Принцип работы регулятора напряжения 1 3

Заключение 1 4

Список литературы 1 5

Введение: Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. В настоящее время задачи регулирования напряжения получили материальную основу в виде регулирующих и компенсирующих устройств. Расчеты показывают, что как правило, дополнительные затраты, связанные с применением регулирующих устройств и их автоматизацией, окупаются той экономией, которая достигается при улучшении режимов напряжений в электрических сетях и системах. Постоянство напряжения в каждой точке сети можно обеспечить применением локальных регуляторов в электрических цепях. Таким образом, возникает вопрос о создании локальных систем автоматического регулирования напряжения в электрической сети. Представляется целесообразным построение локальной системы автоматического регулирования с применением транзисторов.

Цель исследования : Изучить принцип работы и применения регуляторов напряжения для повышения эффективности функционирования электротехнических устройств.

Задачи исследования:

  1. Узнать область назначения и применения регулятора напряжения.
  2. Определить виды регуляторов напряжения.
  3. Изучить принцип работы регуляторов напряжения.
  4. Сделать выводы о проделанной работе.

1. Описание прибора:

Регулятор напряжения представляет собой электрический прибор, который регулирует электрическое напряжение, вырабатываемое генератором переменного тока или генератором постоянного тока в интервале от 14 до 14,4 В при номинальном напряжении сети 12 В и от 7 до 7,2 В при номинальном напряжении сети 6 В.

Регулируемое в указанном интервале напряжение обеспечивает правильную работу батареи и защиту приборов от разрушения. Предпосылкой правильной работы является недопущение возможности перегрузки электрической мощности регулятора. Например: Регулятор имеет максимальную электрическую мощность 200 Вт. Это значит, что мощность генератора переменного тока должна быть P alt <= 200 Вт. Далее, суммарное электропотребление приборов в сети транспортного средства не должно превышать 200 Вт. При перегрузке может наступить разрушение регулятора, либо разряд и разрушение батареи.

Регулятор напряжения переменного тока обеспечивает среднее значение напряжения в указанном интервале. Это означает, что, например, измеряемое осциллоскопом напряжение меняется периодически на большую величину, чем номинальное напряжение. Например, от +- 20 до 30 В. Это среднее значение гарантирует, что приборы типа электрических лампочек не разрушатся. Однако действует такое правило, по которому сумма электропотребления приборов должна быть Ps[Вт] <= Preg[Вт]. То есть, регулятор необходимо выбирать согласно номинальному напряжению [В] и макс. электропотреблению [Вт].

2. Основное назначение и область применения:

Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. Существуют различные способы регулирования напряжения. Разнообразие решений обусловлено требованиями по устойчивости, необходимой точности регулирования, параметрами нагрузок, экономическими и другими факторами.

Регулирование в источниках вторичного электропитания

Величину выпрямленного напряжения в ряде случаев нужно изменять. Такая необходимость может возникнуть при включении мощных двигателей, накала генераторных ламп, для уменьшения бросков тока при включении. Регулирование выпрямленного напряжения можно осуществлять на стороне переменного тока (входе), на стороне постоянного тока (выходе) и в самом выпрямителе применением регулируемых вентилей.

В качестве регуляторов напряжения на стороне переменного тока применяются:

регулируемые трансформаторы или автотрансформаторы.

регулирующие дроссели (магнитные усилители).

В регулируемом трансформаторе или автотрансформаторе первичная или вторичная обмотка выполняются с несколькими выводами. С помощью переключателя изменяется число витков обмотки и, следовательно выходное напряжение трансформатора или автотрансформатора. При коммутации обмоток часть витков может оказаться замкнутой накоротко движком переключателя, что приведет к созданию в замкнутых витках чрезмерно больших токов и к выходу трансформатора из строя. Поэтому такую коммутацию рекомендуется производить после отключения трансформатора из сети. Это является большим недостатком .

3. Виды регуляторов напряжений.

1. По количеству узлов в одном корпусе:

  • только регулятор напряжения
  • регулятор напряжения вместе с выпрямителем электрического тока
  • комбинированный регулятор для напряжения переменного тока и напряжения постоянного тока с выпрямителем

2. По номинальному напряжению в сети транспортного средства и изменению напряжения:

  • номинальное напряжение 6 или 12 В
  • напряжение переменного тока или напряжение постоянного тока

3. По электрической мощности (нагрузке) регулятора

4. По числу фаз на 1-фазные и 3-фазные

5. По типу регулируемого генератора постоянного тока – для генераторов с независимым возбуждением и генераторов с постоянными магнитами.

3.1. Регуляторы переменного напряжения на основе тиристоров:

Тиристорные регуляторы позволяют значительно уменьшить физические размеры устройства, снизить его стоимость и сократить потери электроэнергии, но они обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Тиристорные регуляторы переменного напряжения широко применяются в электроприводе, также для питания электротермических установок. Применение тиристоров для коммутации статорных цепей асинхронных двигателей с короткозамкнутым ротором позволяет решить задачу создания простого и надежного бесконтактного асинхронного электропривода. Можно эффективно воздействовать на процессы разгона, замедления, осуществлять интенсивное торможение и точную остановку. Безыскровая коммутация, отсутствие подвижных частей, высокая степень надежности позволяют применять тиристорные регуляторы во взрывоопасных и агрессивных средах.

Обобщенная схема тиристорного регулятора переменного напряжения приведена на рис. 1:

3.2. Регуляторы переменного напряжения на основе магнитных усилителей:

Рассмотрим регуляторы переменного напряжения на основе магнитных усилителей, тиристоров и транзисторов. Магнитный усилитель (МУ) представляет собой статический электромагнитный аппарат, позволяющий при помощи управляющего сигнала постоянного тока небольшой мощности управлять значительными мощностями в цепи переменного тока . Регулирующий дроссель (или магнитный усилитель) включается на входе выпрямителя. Если обмотки переменного тока магнитного усилителя включить последовательно с нагрузкой и изменить ток в обмотке управления, то будет изменяться индуктивное сопротивление обмоток дросселя и падение напряжения на этих обмотках. Следовательно, будет изменяться. При увеличении, уменьшается, уменьшается, уменьшается и растет.

Регуляторы напряжения, построенные на основе магнитных усилителей, обладают рядом достоинств: практически неограниченный срок службы, простота эксплуатации, высокая температурная и временная стабильность характеристик, высокий КПД. Несмотря на ряд достоинств, регуляторы, построенные на базе магнитных усилителей, редко применяются в современных системах управления, так как существенным недостатком таких устройств являются их большие габариты и масса, вызванные конструктивными особенностями магнитных усилителей.

3.3. Регуляторы переменного напряжения на основе транзисторов:

Транзисторный регулятор напряжения не вносит помех в электрическую сеть и его можно применять для управления нагрузкой, как с активным, так и индуктивным сопротивлением. Регулятор можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, скорости вращения электродвигателя вентилятора или дрели, напряжения на обмотке трансформатора.

Обобщенная схема транзисторных регуляторов переменного напряжения приведена на рисунке 2:

3.4. Синхронный компенсатор назначение, принцип работы:

Понимание того, насколько важно качество электроэнергии (соотношение ее активной и реактивной составляющих – коэффициент мощности), постоянно растет, и вместе с ним будет расти и применение компенсации коэффициента мощности (ККМ). Улучшение качества электроэнергии путем увеличения ее коэффициента мощности уменьшает расходы и гарантирует быстрое возвращение затраченных капиталов. В распределении мощности в сетях с малым и средним напряжением ККМ уделяет основное внимание соотношению активной и реактивной составляющих мощности (cosφ) и оптимизации стабильности напряжения, путем генерации реактивной мощности с целью увеличения качества и стабильности напряжения на распределительном уровне.

Компенсатор синхронный, синхронный электродвигатель, работающий без активной нагрузки, предназначенный для улучшения коэффициента мощности и регулирования напряжения в линиях электропередачи и в электрических сетях В зависимости от изменений величины и характера нагрузки (индуктивная или емкостная) электрической сети меняется напряжение у потребителя (на приемных концах линии электропередачи). Если нагрузка электрической сети велика и носит индуктивный характер, к сети подключают К. с., работающий в перевозбужденном режиме, что эквивалентно подключению емкостной нагрузки. При передаче электроэнергии по линии большой протяженности с малой нагрузкой на режим работы сети заметно влияет распределенная емкость в линии. В этом случае для компенсации емкостного тока в сети к линии подключают К. с., работающий в недовозбужденном режиме. Постоянство напряжения в линии поддерживается регулированием тока возбуждения от напряжения регулятора. Пуск К. с. осуществляется также, как и обычных синхронных двигателей; сила пускового тока К. с. составляет 30–100% его номинального значения. К. с. изготовляют мощностью до 100 ква и более; мощные К. с. имеют водородное или водяное охлаждение. Применяются главным образом на электрических подстанциях.

Любое электрооборудование, использующее магнитные поля (двигатели, дроссели, трансформаторы, оборудование индукционного нагрева, генераторы для дуговой сварки) подвержено определенному запаздыванию при изменении тока, которое называется индуктивностью. Это запаздывание электрооборудования сохраняет направление тока на определенное время, не смотря на то, что отрицательное напряжение пытается его переменить. Пока этот фазовый сдвиг сохраняется, ток и напряжение имеют противоположные знаки. Производящаяся все это время отрицательная мощность отдается обратно в сеть. Когда ток и напряжение по знаку снова уравниваются, необходима такая же энергия, чтобы восстановить магнитные поля индукционного оборудования. Эта магнитная реверсионная энергия называется реактивной мощностью. В сетях с напряжением переменного тока (50/60 Hz) такой процесс повторяется 50–60 раз в секунду. Очевидным выходом из данной ситуации является накопление реверсионной магнитной энергии в конденсаторах с целью освобождения сети (линии питания). Именно поэтому автоматические системы компенсации реактивной мощности (расстроенные / стандартные) устанавливаются на мощную нагрузку, например, на заводах. Такие системы состоят из нескольких конденсаторных блоков, которые могут быть подключены и отключены по мере надобности, и управляются контролером ККМ на основании данных трансформатора тока.

Низкий коэффициент мощности (cosφ) приводит: к повышению затрат и потребления энергии,уменьшению мощности, передающейся по сети, потерям мощности в сети, повышению потерь трансформатора, повышенному падению напряжения в распределенных сетях питания. Увеличение коэффициента мощности может быть достигнуто путем: компенсации реактивной мощности конденсаторами, активной компенсации – использование полупроводников, перевозбуждением синхронных машин (двигатель / генератор)

В системе электроснабжения потери в сетях составляют 8–12% от объема производства. Для уменьшения этих потерь необходимо: правильно о п ределять электрические нагрузки; рационально передавать и распределять электрическую энергию; обеспечивать необходимую степень надежности; обеспечивать необходимое качество электроэнергии; обеспечивать электр о магнитную совместимость приемника с сетью; экономить электроэнергию. Мероприятия, могущие обеспечить вышеперечисленные задачи это – созд а ние быстродействующих средств компенсации реактивной мощности, улу ч шающей качество; сокращение потерь достигается компенсацией реактивной мощности, увеличением загрузки трансформаторов, уменьшением потерь в них, приближением трансформаторов к нагрузкам, использование экономи ч ного оборудования и оптимизация его режимов работы. Режим работы энергосистемы характеризуется тремя параметрами: напряжением, током и активной мощностью. Вспомогательный параметр – реактивная мощность. Реактивная мощность и энергия ухудшают показатели работы энергосист и чивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях. Реактивную мо щ ность потребляют такие элементы питающей сети как трансформаторы эле к тростанций; главные понизительные электростанции, линии электропередач – на это приходится 42% реактивной мощности генератора, из них 22% на п о вышающие трансформаторы; 6,5% на линии электропередач районной си с темы; 12,5% на понижающие трансформаторы. Основные же потребители реактивной мощности – асинхронные электр о двигатели, которые потребляют 40% всей мощности совместно с бытовыми и собственными нуждами. Говоря иначе, существуют приемники электроэнергии, нуждающиеся в реактивной мощности. Одной реактивной мощности, выдаваемой генератором явно недостаточно. Увел и чивать реактивную мощность, выдаваемую генератором нецелесообразно из-за вышеперечисленных причин, т.е. нужно выдавать реактивную мо щ ность именно там, где она больше всего нужна.

4. Принцип работы регулятора напряжения:

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. При подключении регулятора к электросети не допускается менять полюса + и – батареи. Регулятор может разрушиться.

Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить — увеличивается.

Заключение:

Регулирование напряжения позволяет не только повысить качество электроэнергии, но и улучшить ход производственных процессов на промышленных предприятиях: снизить брак продукции, повысить ее качество, увеличить производительность труда людей и производительность механизмов, а также в отдельных случаях сократить потери энергии. Сделав выводы об устройстве и применении регулятора напряжения переменного тока можно с уверенностью сказать, что данное устройство может достаточно облегчить работу как радиотехника так и обычного человека в его использовании для улучшения качество потребляемой электроэнергии.

Список литературы:

  1. Бутов А. „Устройство защиты маломощных ламп накаливания“, Журнал „Радио“ №2, 2004г.
  2. Чекаров А. „Беспомеховый регулятор напряжения“ Журнал „Радио“, №11, 1999г.
  3. Основы радиотехники [Текст] / Н. М. Изюмов, Д. П. Линде. - 4-е изд., перераб. и доп. - М. : Радио и связь, 1983. - 376 с. : ил. - (Массовая радиобиблиотека; вып. 1059). - Б. ц.
  4. Радиотехника [Текст] : к изучению дисциплины / И. П. Жеребцов. - 4-е изд., перераб. и доп. - М. : [б. и.], 1958. - 495 с. - Б. ц.
  5. Практикум по электротехнике и радиотехнике [Текст] : пособие для студ. пед. ин-тов / Под ред. Н.Н. Малова. - М. : Учпедгиз, 1958. - 166 с. - Б. ц.
  6. Курс электротехники и радиотехники [Текст] : учебное пособие: для пед. ин-тов / Н.Н. Малов. - М. : Госфизмат, 1959. - 424 с. - Б. ц.

PAGE \* MERGEFORMAT 2

Другие похожие работы, которые могут вас заинтересовать.вшм>

11466. Стратегический менеджмент как основа повышения эффективности функционирования предприятия в кризисной ситуации 32.6 KB
В прошлом предприятия могли успешно функционировать обращая внимание в основном на ежедневную работу на внутренние проблемы связанные с повышением эффективности использования ресурсов в текущей деятельности. Сейчас же хотя не снимается задача рационального использования потенциала в текущей деятельности исключительно важным становиться осуществление такого управления которое обеспечивает адаптацию предприятия к быстро меняющимся условиям окружающей среды. Стратегическими являются те решения и действия которые имеют...
16837. Проблема применения коэффициента замещения как основного индикатора эффективности функционирования пенсионной системы в России 8.8 KB
Главным образом с позиции застрахованного лица судить об эффективности функционирования схем пенсионного страхования в которых финансирование выплат осуществляется за счет уплаты страховых взносов можно по уровню замещения пенсией утраченного заработка работника. Такой показатель в теории пенсионного страхования называется коэффициентом замещения. Так в проекте Стратегии долгосрочного развития пенсионной системы РФ сказано что задачами развития пенсионной системы являются обеспечение коэффициента замещения трудовой пенсией по старости...
2542. Знакомство с практическими схемами автоматических регуляторов напряжения СГ 306.51 KB
Принципиальная схема АРН генераторов серии ТМВ Автоматическое регулирование напряжения СГ серии ТМВ обеспечивается с точностью 57 системой АФК. Кроме того регулятор имеет корректор напряжения который доводит точность стабилизации напряжения до 12. В качестве компаундирующего сопротивления используется трехфазный дроссель Др включенный в каждую фазу обмотки напряжения возбудительного трансформатора.
948. Пути повышения эффективности коммерческой работы в розничной торговой организации 100.41 KB
Теоретические основы исследования эффективности коммерческой деятельности торгового предприятия. Функции цели задачи коммерческой деятельности розничной торговой организации. Коммерческая деятельность является одной из важнейших областей человеческой деятельности возникших в результате разделения труда. Однако такое широкое толкование коммерческой деятельности не согласуется с ранее изложенным подходом к коммерции как торговым процессам по осуществлению актов куплипродажи товаров.
5380. Разработка учебного стенда Устройство и принцип работы принтера как средство повышения качества подготовки учащихся специальности Техническое обслуживание средств вычислительной техники и компьютерных сетей 243.46 KB
Классифицируются принтеры по пяти основным позициям: принципу работы печатающего механизма, максимальному формату листа бумаги, использованию цветной печати, наличию или отсутствию аппаратной поддержки языка PostScript, а также по рекомендуемой месячной нагрузке.
19917. Направления совершенствования обучения персонала и повышения эффективности работы АО ДБ «Банк Китая в Казахстане» 146.22 KB
Роль обучения персонала в стратегии развития организации. Процесс профессионального обучения и оценка его эффективности. Управление процессом обучения и формирования эффективного персонала организации. Методики совершенствования обучения персонала.
15626. Пути повышения эффективности организации социально-педагогической работы с педагогически запущенными подростками в общеобразовательном учреждении 68.85 KB
Анализ социально-педагогической работы с педагогически запущенными подростками как проблема исследования. Исследование зарубежного и отечественного опыта в изучении проблемы педагогической запущенности. Состояние организации социально-педагогической работы с педагогически запущенными подростками в общеобразовательном учреждении. Обоснование модели социально-педагогической работы с педагогически запущенными подростками в общеобразовательной школе.
598. Понятие защитного заземления и принцип его действия. Виды заземляющих устройств 8.92 KB
Понятие защитного заземления и принцип его действия. Назначение заземления – устранение опасности поражения электротоком в случае соприкосновения к корпусу. Расчет заземления производится по допустимым напряжениям прикосновения и шага или допустимому сопротивлению растекания тока заземлителя. Расчет заземления имеет целью установить главные параметры заземления – число вертикальных заземлителей и их размеров порядок размещения заземлителей длины заземляющих проводников и их сечения.
6655. Полевые транзисторы, принцип их работы 48.85 KB
При увеличении отрицательного значения напряжения U происходит увеличение ширины pn перехода за счет уменьшения ширины nканала см. Таким образом управление потоком рабочих носителей заряда в полевом транзисторе осуществляется за счет изменения сопротивления канала при изменении напряжения затвористок. Очевидно степень уменьшения ширины канала а следовательно его сопротивление будет увеличиваться при увеличении напряжения U. При малых значениях напряжения U обусловленное этим напряжением уменьшение ширины канала не существенно и...
14245. Назначение, устройство и принцип работы магнитолы 68.26 KB
Основными функциональными узлами магнитофона являются лентопротяжный механизм ЛПМ блок магнитных головок БМГ БВГ для записи воспроизведения и стирания сигналов и электронные устройства обеспечивающие работу БМГ. Характеристики ЛПМ в наибольшей степени влияют на качество звуковоспроизведения аппарата в целом потому что искажения которые неидеальный ЛПМ вносит в сигнал невозможно исправить никакой коррекцией в аналоговом электронном тракте...

Электрическая сеть любого автомобиля питается за счет генератора, который приводится во вращение двигателем при помощи ременной передачи. Его обороты постоянно меняются, начиная от 900 и заканчивая несколькими тысячами, вызывая соответствующее вращение ротора. Для нормальной работы всех электроприборов и зарядки аккумулятора, в бортовой сети напряжение должно быть стабильным, что обеспечивает реле-регулятор. Являясь самым слабым звеном в системе электроснабжения, устройство в первую очередь нуждается в проверке при обнаружении неполадок зарядки АКБ и других поломках электросети автомобиля.

Принцип работы

Регулятор напряжения автогенератора предназначен для поддержания напряжения бортовой сети в необходимых пределах при любом режиме работы и различной частоте вращения генератора, изменении нагрузки и перепадах внешней температуры. Также он способен выполнять дополнительные функции – защищать генератор от перегрузок и аварийного режима работы, автоматически подключать к бортовой цепи обмотки возбуждения или систему сигнализации аварии генератора.

Работа любого регулятора напряжения основана на одном и том же принципе, и определяется следующими факторами:

  1. Частотой оборотов ротора.
  2. Силой тока, которую генератор отдает в нагрузку.
  3. Показателем магнитного потока, которую создает ток обмотки возбуждения.

Более высокие обороты ротора определяют повышение напряжения генератора. Рост силы тока на обмотке возбуждения делает сильнее магнитный поток, и одновременно напряжение. Любой регулятор напряжения стабилизирует его за счет изменения тока возбуждения. При росте или снижении напряжения, регулятор понижает или повышает ток возбуждения, регулируя напряжение в необходимых пределах.

Сам реле-регулятор представляет собой электронную схему с выходами к графитным щеткам. Его устанавливают как в самом корпусе генератора рядом со щетками, так и вне его, и тогда щетки крепятся к щеткодержателю.

Неисправности

Чаще всего реле-регулятор выходит из строя по следующим причинам:

  1. При исправном АКБ отсутствует ток зарядки, из-за чего он не заряжается. Это происходит при плохом присоединении проводов к зажимам реле или при обрыве цепи от генератора к батарее. Устраняется закреплением провода в цепи, проверкой и регулировкой регулятора напряжения и реле-регулятора.
  2. Недостаточный ток зарядки при разряженной АКБ или большой при полностью заряженном аккумуляторе вызваны нарушением регулировки регулятора напряжения. Устраняется регулировкой устройства или его заменой.
  3. Горение и перегорание ламп с чрезмерным накалом происходит при нарушении регулировки реле-регулятора или замыкании контактов. Устраняется разъединением и зачисткой замкнувших контактов, регулировкой или заменой регулятора напряжения.
  4. Большой ток разряда после остановки мотора. Происходит при замыкании контактов реле-регулятора (спекании контактов, поломке пружины якоря) или коротком замыкании электропровода. Ремонтируется нахождением и устранением короткого замыкания при отключенном аккумуляторе, проверкой и регулировкой ограничителя тока, размыканием и зачисткой контактов, заменой пружины с регулировкой ее зазора и натяжения.

Как проверить реле регулятор

Поломка реле-регулятора проявляется в систематическом недозаряде или перезаряде аккумулятора. Простейшая проверка устройства проводится тестером в режиме вольтметра на постоянном токе в пределах от 0 до 20В. Щупы прибора при неработающем двигателе подсоединяются к клеммам АКБ и фиксируют показания вольтметра, которые от состояния батареи варьируются в пределах 12-12,8 В.

После двигатель запускают и смотрят на показания прибора: напряжение должно повыситься до 13-13,8 В, в зависимости от оборотов коленвала. Дальнейшее повышение оборотов должно соответственно увеличивать напряжение. Так, на средней частоте вращения оно составляет 13,5-14 В, а при максимальных достигает 14-14,5 В. Отсутствие повышения напряжения после запуска мотора свидетельствует о неисправности реле-регулятора.

Существует вероятность, зарядка аккумулятора отсутствует по другой причине, к примеру, из-за неисправности в самом генераторе. С целью установки диагноза, реле-регулятор снимается для более точной проверки при помощи тестера и 12-вольтовой лампы. Дополнительно понадобятся провода с клеммами, блок питания или зарядное устройство, в котором можно регулировать ток.

После подключения реле к схеме и включении блока питания лампа загорится. Регулятором напряжения постепенно увеличивают ток и следят за показаниями вольтметра или шкалой подключенного тестера. При показаниях до 14,5 В лампа должна гореть, а после превышения гаснуть. Если после уменьшения ниже 14,5 она загорается снова, значит реле-регулятор исправен. При отклонениях работы в ту или иную сторону реле будет давать перезаряд или не выдавать необходимый ток для заряда, что является поводом для его замены.

Подобным образом проверяются интегральные реле, которые в народе называют «шоколадки», применяемые на более старых моделях отечественных машин. Схема также подключается к блоку питания или зарядному устройству через лампочку, которая должна гаснуть при достижении необходимого предела напряжения. При этом нужно обратить внимание на состояние клемм, которые при загрязнении или окислении могут создать дополнительное сопротивление и при исправном реле вызывать потерю напряжения.

Замена реле регулятора генератора

Замена реле необходима в следующих случаях:

  1. Износ щеток, при котором контакт с реле-регулятором пропадает и генератор не работает.
  2. Пробой в схеме устройства, который вызывает в системе увеличение напряжения.
  3. Поломка креплений или корпуса, которое может привести к замыканию.

Процесс замены устройства рассмотрен на примере генератора Лада-Калина. Замена реле-регулятора связан с демонтажем генератора, и осуществляется в следующем порядке:

  1. Снятие с генератора клеммы «минус».
  2. Демонтаж генератора.

3. Отщелкивание на крышке генератора пластиковых фиксаторов и ее снятие.

4. Отключение разъема диодного моста.

5. Откручивание гайки и демонтаж втулки контактной группы.

6. Выкручивание пары винтов, удерживающих реле-регулятор.

7. Демонтаж самого реле.

8. Сборку проводят в обратном порядке.

В электрических сетях очень часто используется автоматическое включение и отключение генератора. Для этого существует реле-регулятор напряжения. С его помощью осуществляется защита генератора от перегрузок, позволяет автоматически регулировать напряжение и силу тока в установленных пределах. Этот прибор, в основном, используется в электрических сетях всех автомобилей и устанавливается в моторном отсеке.

Назначение и устройство реле-регулятора

Данное устройство является трехэлементным, состоящим из трех независимых автоматов. Это реле обратного тока, ограничитель тока и регулятор напряжения. Эти составные части смонтированы на общем основании и закрываются общей крышкой. Для подключения проводов на основании установлены три клеммы.

Автоматическое включение генератора в сеть осуществляется с помощью реле обратного тока при условии его превышения напряжения аккумулятора на определенное значение. При понижении напряжения, происходит автоматическое отключение генератора. В его состав входит катушка и сердечник с двумя обмотками - шунтовой и сериесной с различным количеством витков проволоки, а также ярмо и якорь с системой контактов.

Заранее заданные пределы напряжения генератора поддерживаются с помощью регулятора. В него входят катушка и сердечник с обмоткой, якорь с системой контактов, ярмо, магнитный шунт, а также цилиндрическая пружина.

Один конец обмотки катушки соединен с массой, а другой - с клеммой генератора, проходя через ярмо, сопротивление и обмотки. Таким образом, значение тока и магнитного потока находится в зависимости от напряжения, которое развивает . Регулятор напряжения позволяет автоматически регулировать силу зарядного тока, получаемую за счет разницы напряжений между аккумулятором и генератором.

Использование ограничителя тока

Для защиты генератора от перегрузок применяется ограничитель тока. В состав входит катушка и сердечник с обмоткой, а также обмотка сопротивления, ярмо и якорь с контактами, как и в других составляющих устройствах. Принцип работы устройства совпадает с регулятором напряжения, когда вся нагрузка генератора пропускается через обмотку ограничителя.

Общую нормальную работу реле-регулятора можно определить с помощью , расположенного на щитке приборов и по состоянию самого аккумулятора. Если на амперметре постоянно видно большое значение зарядного тока, несмотря на то, что аккумулятор находится в хорошем состоянии, это означает, что реле-регулятор напряжения работает при повышенном напряжении.

Данное устройство является достаточно сложным прибором, требующим точных регулировок и грамотного обращения. Регулировка должна осуществляться только с применением точных контрольных приборов.

Реле регулятор выпрямитель напряжения

Электромеханический, в котором с помощью вибрирующих контактов изменяется ток в обмотке возбуждения генератора переменного тока. Работа вибрирующий контактов обеспечивается таким образом, чтобы с ростом напряжения бортовой сети уменьшался ток в обмотке возбуждения. Однако вибрационные регуляторы напряжения поддерживают напряжение с точностью 5-10%, из-за этого существенно снижается долговечность аккумулятора и освети тельных ламп автомобиля.
Электронные регуляторы напряжения бортовой сети типа Я112 , которые в народе называют «шоколадка». Недостатки этого регулятора известны всем — низкая надежность, обусловленная низким коммутационным током 5А и местом установки прямо на генераторе, что ведет к перегреву регулятора и выходу его из строя. Точность поддержания напряжения остается, несмотря на электронную схему, очень низкой и составляет 5% от номинального напряжения.

Вот поэтому я решил сделать устройство, которое свободно от вышеизложенных недостатков. Регулятор прост в настройке, точность поддержания напряжения составляет 1% от номинального напряжения. Схема, приведенная на рис.1 прошла испытания на многих автомобилях, в том числе и грузовых в течение 2-х лет и показала очень хорошие результаты.


Рис.1.

Принцип работы

При включении замка зажигания напряжение +12В подается на схему электронного регулятора. Если напряжение, поступающее на стабилитрон VD1 с делителя напряжения R1R2 недостаточно для его пробоя, то транзисторы VT1, VT2 находятся в закрытом состоянии, а VT3 — в открытом. Через обмотку возбуждения протекает максимальный ток, выходное напряжение генератора начинает расти и при достижении 13,5 — 14,2В возникает пробой стабилитрона.

Благодаря этому открываются транзисторы VT1, VT2, соответственно транзистор VT3 закрывается, ток обмотки возбуждения уменьшается и снижается выходное напряжение генератора. Снижения выходного напряжения примерно на 0,05 — 0,12В достаточно, чтобы стабилитрон перешел в запертое состояние, после чего транзисторы VT1, VT2 закрываются, а транзистор VT3 открывается и через обмотку возбуждения снова начинает протекать ток. Этот процесс непрерывно повторяется с частотой 200 — 300 Гц, которая определяется инерционностью магнитного потока.

Конструкция

При изготовлении электронного регулятора, следует обратить особое внимание на отвод тепла от транзистора VT3. На этом транзисторе, работающем в ключевом режиме, 1ем не менее выделяется значительная мощность, поэтому его следует монтировать на радиаторе. Остальные детали можно разместить на печатной плате, прикрепленной к радиатору.

Таким образом, получается очень компактная конструкция. Резистор R6 должен быть мощностью не менее 2Вт. Диод VD2 должен иметь прямой ток около 2А и обратное напряжение не менее 400В, лучше всего подходит КД202Ж, но возможны и другие варианты. Транзисторы желательно применить те, которые указаны на принципиальной схеме, особенно VT3. Транзистор VT2 можно заменить на КТ814 с любыми буквенными индексами. Стабилитрон VD1 желательно установить серии КС с напряжением стабилизации 5,6-9В, (типа КС156А, КС358А, КС172А), при этом увеличится точность поддержания напряжения.

Настройка

Правильно собранный регулятор напряжения не нуждается в особой настройке и обеспечивает стабильность напряжения бортовой сети примерно 0,1 — 0,12В, при изменении числа оборотов двигателя от 800 до 5500 об/мин. Проще всего настройку производить на стенде, состоящем из регулируемого блока питания 0 — 17В и лампочки накаливания 12В 5-10Вт. Плюсовой выход блока питания подключают к клемме “+” регулятора, минусовой выход блока питания подключают к клемме «Общ”, а лампочку накаливания подключают к клемме «Ш» и клемме «Общ” регулятора.

Настройка сводится к подбору резистора R2, который изменяют в пределах 1-5 кОм, и добиваются порога срабатывания на уровне 14,2В. Это и есть поддерживаемое напряжение бортовой сети. Увеличивать его выше 14,5В нельзя, поскольку при этом резко сократится ресурс аккумуляторов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: