Модели базы данных

Иерархические базы данных имеют форму деревьев с дугами-связями и узлами-элементами данных. Иерархическая структура предполагала неравноправие между данными - одни жестко подчинены другим. Подобные структуры, безусловно, четко удовлетворяют требованиям многих, но далеко не всех реальных задач.

2. Сетевая модель данных. В сетевых БД наряду с вертикальными реализованы и горизонтальные связи. Однако унаследованы многие недостатки иерархической и главный из них, необходимость четко определять на физическом уровне связи данных и столь же четко следовать этой структуре связей при запросах к базе.

3. Реляционная модель. Реляционная модель появилась вследствие стремления сделать базу данных как можно более гибкой. Данная модель предоставила простой и эффективный механизм поддержания связей данных.

Во-первых , все данные в модели представляются в виде таблиц и только таблиц. Реляционная модель - единственная из всех обеспечивает единообразие представления данных. И сущности, и связи этих самых сущностей представляются в модели совершенно одинаково - таблицами . Правда, такой подход усложняет понимание смысла хранящейся в базе данных информации, и, как следствие, манипулирование этой информацией.

Избежать трудностей манипулирования позволяет второй элемент модели - реляционно-полный язык (отметим, что язык является неотъемлемой частью любой модели данных, без него модель не существует). Полнота языка в приложении к реляционной модели означает, что он должен выполнять любую операцию реляционной алгебры или реляционного исчисления ( полнота последних доказана математически Э.Ф. Коддом). Более того, язык должен описывать любой запрос в виде операций с таблицами, а не с их строками. Одним из таких языков является SQL .

Третий элемент реляционной модели требует от реляционной модели поддержания некоторых ограничений целостности . Одно из таких ограничений утверждает, что каждая строка в таблице должна иметь некий уникальный идентификатор , называемый первичным ключом. Второе ограничение накладывается на целостность ссылок между таблицами. Оно утверждает, что атрибуты таблицы, ссылающиеся на первичные ключи других таблиц, должны иметь одно из значений этих первичных ключей.

4. Объектно-ориентированная модель. Новые области использования вычислительной техники, такие как научные исследования, автоматизированное проектирование и автоматизация учреждений, потребовали от баз данных способности хранить и обрабатывать новые объекты - текст, аудио- и видеоинформацию, а также документы. Основные трудности объектно-ориентированного моделирования данных проистекают из того, что такого развитого математического аппарата, на который могла бы опираться общая , не существует. В большой степени, поэтому до сих пор нет базовой объектно-ориентированной модели. С другой стороны, некоторые авторы утверждают, что общая объектно-ориентированная модель данных в классическом смысле и не может быть определена по причине непригодности классического понятия модели данных к парадигме объектной ориентированности. Несмотря на преимущества объектно-ориентированных систем - реализация сложных типов данных , связь с языками программирования и т.п. - на ближайшее время превосходство реляционных СУБД гарантировано.

Рассмотрим более подробно эти модели данных далее.

Иерархическая модель базы данных

Иерархические базы данных - самая ранняя модель представления сложной структуры данных. Информация в иерархической базе организована по принципу древовидной структуры, в виде отношений "предок- потомок ". Каждая запись может иметь не более одной родительской записи и несколько подчиненных. Связи записей реализуются в виде физических указателей с одной записи на другую. Основной недостаток иерархической структуры базы данных - невозможность реализовать отношения " многие-ко-многим ", а также ситуации, когда запись имеет несколько предков.

Иерархические базы данных . Иерархические базы данных графически могут быть представлены как перевернутое дерево , состоящее из объектов различных уровней. Верхний уровень ( корень дерева ) занимает один объект , второй - объекты второго уровня и так далее.

Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка ( объект , более близкий к корню) к потомку ( объект более низкого уровня), при этом объект -предок может не иметь потомков или иметь их несколько, тогда как объект - потомок обязательно имеет только одного предка. Объекты, имеющие общего предка, называются близнецами.

Иерархической базой данных является Каталог папок Windows , с которым можно работать, запустив Проводник. Верхний уровень занимает папка Рабочий стол . На втором уровне находятся папки Мой компьютер , Мои документы, Сетевое окружение и Корзина , которые являются потомками папки Рабочий стол , а между собой является близнецами. В свою очередь , папка Мой компьютер является предком по отношению к папкам третьего уровня -папкам дисков ( Диск 3,5(А:), (С:), (D:), (Е:), (F:)) и системным папкам ( сканер , bluetooth и.т.д.) - на рис. 4.1 .


Рис. 4.1.

Организация данных в СУБД иерархического типа определяется в терминах: элемент, агрегат, запись ( группа ), групповое отношение , база данных .

Атрибут (элемент данных) - наименьшая единица структуры данных. Обычно каждому элементу при описании базы данных присваивается уникальное имя. По этому имени к нему обращаются при обработке. Элемент данных также часто называют полем.
Запись - именованная совокупность атрибутов. Использование записей позволяет за одно обращение к базе получить некоторую логически связанную совокупность данных. Именно записи изменяются, добавляются и удаляются. Тип записи определяется составом ее атрибутов. Экземпляр записи - конкретная запись с конкретным значением элементов.
Групповое отношение - иерархическое отношение между записями двух типов. Родительская запись (владелец группового отношения) называется исходной записью, а дочерние записи (члены группового отношения) - подчиненными. Иерархическая база данных может хранить только такие древовидные структуры.

Корневая запись каждого дерева обязательно должна содержать ключ с уникальным значением. Ключи некорневых записей должны иметь уникальное значение только в рамках группового отношения. Каждая запись идентифицируется полным сцепленным ключом, под которым понимается совокупность ключей всех записей от корневой, по иерархическому пути.

При графическом изображении групповые отношения изображают дугами ориентированного графа, а типы записей - вершинами ( диаграмма Бахмана).

Для групповых отношений в иерархической модели обеспечивается автоматический режим включения и фиксированное членство. Это означает, что для запоминания любой некорневой записи в БД должна существовать ее родительская запись .

Пример

Рассмотрим следующую модель данных предприятия (см. рис. 4.2): предприятие состоит из отделов, в которых работают сотрудники. В каждом отделе может работать несколько сотрудников, но сотрудник не может работать более чем в одном отделе.

Поэтому, для информационной системы управления персоналом необходимо создать групповое отношение, состоящее из родительской записи ОТДЕЛ (НАИМЕНОВАНИЕ_ОТДЕЛА, ЧИСЛО_РАБОТНИКОВ) и дочерней записи СОТРУДНИК (ФАМИЛИЯ, ДОЛЖНОСТЬ, ОКЛАД). Это отношение показано на рис. 4.2 (а) (Для простоты полагается, что имеются только две дочерние записи).

Для автоматизации учета контрактов с заказчиками необходимо создание еще одной иерархической структуры: заказчик - контракты с ним - сотрудники, задействованные в работе над контрактом. Это дерево будет включать записи ЗАКАЗЧИК (НАИМЕНОВАНИЕ_ЗАКАЗЧИКА, АДРЕС), КОНТРАКТ(НОМЕР, ДАТА,СУММА), ИСПОЛНИТЕЛЬ (ФАМИЛИЯ, ДОЛЖНОСТЬ, НАИМЕНОВАНИЕ_ОТДЕЛА) (

Аспект структуры определяет, что из себя логически представляет база данных, аспект манипуляции определяет способы перехода между состояниями базы данных (то есть способы модификации данных) и способы извлечения данных из базы данных, аспект целостности определяет средства описаний корректных состояний базы данных.

Модель данных - это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы - поведение данных .

В литературе, статьях и в обиходной речи иногда встречается использование термина «модель данных» в смысле «схема базы данных » («модель базы данных»). Такое использование является неверным, на что указывают многие авторитетные специалисты, в том числе К. Дж. Дейт , М. Р. Когаловский, С. Д. Кузнецов. Модель данных есть теория , или инструмент моделирования , в то время как модель базы данных (схема базы данных) есть результат моделирования . По выражению К. Дейта соотношение между этими понятиями аналогично соотношению между языком программирования и конкретной программой на этом языке .

М. Р. Когаловский поясняет эволюцию смысла термина следующим образом. Первоначально понятие модели данных употреблялось как синоним структуры данных в конкретной базе данных . В процессе развития теории систем баз данных термин «модель данных» приобрел новое содержание. Возникла потребность в термине, который обозначал бы инструмент, а не результат моделирования, и воплощал бы, таким образом, множество всевозможных баз данных некоторого класса. Во второй половине 1970-х годов во многих публикациях, посвященных указанным проблемам, для этих целей стал использоваться все тот же термин «модель данных». В настоящее время в научной литературе термин «модель данных» трактуется в подавляющем большинстве случаев в инструментальном смысле (как инструмент моделирования) .

Тем не менее, длительное время термин «модель данных» использовался без формального определения. Одним из первых специалистов, который достаточно формально определил это понятие, был Э. Кодд . В статье «Модели данных в управлении базами данных» он определил модель данных как комбинацию трех компонентов:

См. также

  • Метамоделирование
  • Статья Метамоделирование в Викиучебнике

Примечания

Литература

  • Дейт К. Дж. Введение в системы баз данных = Introduction to Database Systems. - 8-е изд. - М .: «Вильямс», 2006. - 1328 с. - ISBN 0-321-19784-4
  • Когаловский М. Р. Перспективные технологии информационных систем. - М .: ДМК Пресс; Компания АйТи, 2003. - 288 с. - ISBN 5-279-02276-4
  • Когаловский М. Р. Энциклопедия технологий баз данных. - М .: Финансы и статистика, 2002. - 800 с. - ISBN 5-279-02276-4
  • Цикритзис Д., Лоховски Ф. Модели данных = D. Tsichritzis, F. Lochovsky. Data Models. Prentice Hall, 1982. - М .: Финансы и статистика, 1985. - 344 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Модель данных" в других словарях:

    модель данных - Совокупность правил порождения структур данных в базе данных, операций над ними, а также ограничений целостности, определяющих допустимые связи и значения данных, последовательность их изменения. Примечание Для задания модели данных используется… …

    Модель данных - – способ представления данных информационной модели в вычислительной среде. [ГОСТ 2.053 2006] Рубрика термина: Технологии Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника … Энциклопедия терминов, определений и пояснений строительных материалов

    модель данных - 3.1.7 модель данных (Data Model; DM): Графическое и/или лексическое представление данных, устанавливающее их свойства, структуры и взаимосвязи. [ИСО/МЭК ТО 11404 3:1996, определение 3.2.11] Источник …

    МОДЕЛЬ ДАННЫХ - согласно ГОСТ 2.053–2006 ЕСКД «Электронная структура изделия», – способ представления данных информационной модели в вычислительной среде … Делопроизводство и архивное дело в терминах и определениях

    модель данных многомерная - Модель данных, оперирующая многомерными представлениями данных в виде кубов данных. Такие модели данных стали широко использоваться в середине 90 х годов в связи с развитием технологий OLAP. Операционные возможности многомерных моделей данных… … Справочник технического переводчика

    модель данных Всемирной таможенной организации - Модель данных и набор данных, разработанные во Всемирной таможенной организации на основе Справочника элементов внешнеторговых данных ООН (СЭВД ООН) [Упрощение процедур торговли: англо русский глоссарий терминов (пересмотренное второе издание)… … Справочник технического переводчика

    Иерархическая модель данных представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней. Между объектами существуют связи, каждый объект может включать в себя несколько объектов… … Википедия

    - (РМД) логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики как теории множеств и логика первого порядка. На реляционной модели данных строятся… … Википедия

    У этого термина существуют и другие значения, см. ER. Модель сущность связь (ER модель) (англ. entity relationship model, ERM) модель данных, позволяющая описывать концептуальные схемы предметной области. ER модель используется при… … Википедия

    ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства - Терминология ГОСТ Р ИСО/МЭК 19778 1 2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа: 5.4.9 AE CE ID … Словарь-справочник терминов нормативно-технической документации

Книги

  • Модель электронного газа и теория обобщенных зарядов для описания межатомных сил и адсорбции , А. М. Долгоносов. В предлагаемой книге рассмотрены четыре ключевые темы атомной и молекулярной физики, квантовой и физической химии: описание атомного электронного газа и следующий из этого вывод основных…

Виды моделей данных БД

Модели организации данных. Сетевые, реляционные, иерархические модели.

Ядром любой базы данных является модель данных. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними.

Модель данных - это совокупность структур данных и операций их обработки. Рассмотрим три основных типа моделей данных: иерархическую, сетевую и реляционную.

Виды моделей данных БД

Иерархическую модель БД изображают в виде дерева. Элементы дерева вершины представляют совокупность данных, например логические записи.

Иерархическая модель представляет собой совокупность элементов, расположенных в порядке их подчинения от общего к частному и образующих перевернутое по структуре дерево (граф).

К основным понятиям иерархической структуры относятся уровень, узел и связь. Узел - это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне. Иерархическое дерево имеет только одну вершину, не подчиненную никакой другой вершине и находящуюся на самом верхнем - первом уровне. Зависимые (подчиненные) узлы находятся на втором, третьем и т. д. уровнях. Количество деревьев в базе данных определяется числом корневых записей. К каждой записи базы данных существует только один иерархический путь от корневой записи.

Сетевые модели БД соответствуют более широкому классу объектов управления, хотя требуют для своей организации и дополнительных затрат.

В сетевой структуре при тех же основных понятиях (уровень, узел, связь) каждый элемент может быть связан с любым другим элементом.

Реляционная модель БД представляет объекты и взаимосвязи между ними в виде таблиц, а все операции над данными сводятся к операциям над этими таблицами. На этой модели базируются практически все современные СУБД. Эта модель более понятна, "прозрачна" для конечного пользователя организации данных.

Реляционная модель данных объекты и связи между ними представляет в виде таблиц, при этом связи тоже рассматриваются как объекты. Все строки, составляющие таблицу в реляционной базе данных, должны иметь первичный ключ. Все современные средства СУБД поддерживают реляционную модель данных.

Эта модель характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.

Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

1. Каждый элемент таблицы соответствует одному элементу данных.

2. Все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип и длину.

3. Каждый столбец имеет уникальное имя.

4. Одинаковые строки в таблице отсутствуют;

5. Порядок следования строк и столбцов может быть произвольным.

Классификация баз данных.

По технологии обработки данных базы данных подразделяются на централизованные и распределенные.

Централизованная база данных хранится в памяти одной вычислительной системы. Если эта вычислительная система является компонентом сети ЭВМ, возможен распределённый доступ к такой базе. Такой способ использования баз данных часто применяют в локальных сетях ПК.

Распределённая база данных состоит из нескольких, возможно пересекающихся или даже дублирующих друг друга частей, хранимых в различных ЭВМ вычислительной сети. Работа с такой базой осуществляется с помощью системы управления распределённой базой данных (СУРБД).

По способу доступа к данным базы данных разделяются на базы данных с локальным доступом и базы данных с удаленным (сетевым) доступом.

Ядром любой модели базы данных является модель данных.

Модель данных - совокупность структур данных и операций их обработки. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними.

На сегодняшний день существует три основных подхода к построению баз данных: иерархический, сетевой и реляционный.

Исторически первой появилась Иерархическая модель данных. Иерархическая модель данных строится по прин­ципу иерархии типов объектов, т.е. один тип объекта яв­ляется главным, а остальные подчиненными.

Данные представлены в виде деревьев. Две вершины дерева связаны отношением подчиненности. Дерево обя­зательно содержит одну вершину, которая не имеет глав­ных. Такая вершина называется корнем. В данном случае это вершина 3. Вершины, которые не имеют подчинен­ных называются листьями, на рисунке это 1, 2, 5, 7, 8, 9.

Рис.1. Иерархическая модель данных

Вершина дерева хранит данные, характеризующие не­который объект и несколько связей с подчиненными вер­шинами.

Между главными и подчиненными объектами установ­лено отношение «один ко многим». Для каждого подчи­ненного типа объекта может быть только один исходный тип объекта.

Главная вершина - Отдел - содержит информацию о названии, бюджете и телефоне отдела. Отдел имеет под­чиненную вершину Руководитель с информацией Фами­лия, Год рождения, Разряд и несколько подчиненных вер­шин сотрудники, каждый сотрудник характеризуется Фамилией, Адресом и т.д. Данное дерево содержит ин­формацию об одном отделе. Для описания второго отдела требуется второе дерево. База данных будет содержать несколько деревьев одинаковой структуры. Возможные операции с иерархической базой данных: переход между деревьями, создание и удаление дерева, поиск вершины дерева, изменение информации в вершинах. Работа с иерархическими базами данных основана на математичес­кой теории графов.

Сетевая модель данных.

Сетевая модель является обобщением иерархичес­кой модели данных. Любой объект может быть главным и подчиненным. Каждый объект может участвовать в любом чис­ле взаимодействий. Единственное ограничение - отно­шение подчиненности не может вернуться обратно к вер­шине, с которой оно начиналось.

Рис.2. Сетевая модель данных

Отдел содержит информацию: Название, Бюджет, Те­лефон и связи с Руководителем и несколькими Сотрудни­ками. Руководитель характеризуется Датой вступления в должность, Годом рождения, Разрядом. Сотрудники ха­рактеризуются фамилией, Адресом. Вершина Руководи­тель связана с одной из вершин Сотрудников, в ней хра­нятся Фамилия и Адрес руководителя.

Реляционная модель данных.

В реляционной модели данных объекты и взаимодей­ствия между ними представляются с помощью таблиц. Каждая таблица должна иметь первичный ключ - поле или комбинацию полей, которая единственным образом идентифицирует каждую строку таблицы.

В настоящее время реляционная модель данных явля­ется наиболее популярной. На ее идеологии построены СУБД FoxPro, Access, Visual C++ и д.р.

Возможные операции в реляционной базе данных: со­здание таблиц и связей, изменение структуры таблиц, добавление, удаление и изменения записей, поиск данных, отбор данных из одной или нескольких таблиц и т.д.

Работа с реляционными базами данных основана на ре­ляционной алгебре.

Иерархическая модель данных

В ней существует упорядоченность элементов в записи, один элемент считается главным, остальные подчиненными. Данные в записи упорядочены в определенную последовательность, как ступеньки лестницы, и поиск данных может осуществляться лишь последовательным спуском со ступеньки на ступеньку. Поиск какого-либо элемента данных в такой системе может оказаться довольно трудоемким из-за необходимости последовательно проходить несколько предшествующих иерархических ступеней.

Иерархическую БД образует каталог файлов, хранимых на диске; дерево каталогов, доступное для просмотра в Total Commander, - наглядная демонстрация структуры такой БД и поиска в ней нужного элемента. Такой же БД является родовое генеалогическое дерево.

Сетевая модель данных

Отличается большой гибкостью, так как в ней существует возможность устанавливать дополнительно к вертикальным иерархическим связям горизонтальные связи. Это облегчает процесс поиска требуемых элементов данных, так как уже не требуется обязательного прохождения всех существующих ступеней.

Сетевой БД фактически является Всемирная паутина глобальной компьютерной сети Интернет. Гиперссылки связывают между собой сотни миллионов документов в единую сетевую БД.

Реляционная модель данных

В реляционной БД под записью понимается строка прямоугольной таблицы. Элементы записи образуют столбцы этой таблицы (поля). Все элементы в столбце имеют одинаковый тип (числовой, символьный), а каждый столбец - неповторяющееся имя. Одинаковые строки в таблице отсутствуют.

Преимущества таких БД ─ наглядность и понятность организации данных, скорость поиска нужной информации.

Примером реляционной БД служит ведомость назначения на стипендию, в которой записью является строка с данными о конкретном студенте, а имена полей (столбцов) указывают, какие данные о каждом студенте должны быть записаны в ячейках таблицы.

Любой тип можно свести к реляционному.

Типы данных

Тип данных определяет множество значений, которые может принимать данное поле в различных записях.

Основные типы данных в современных БД:

    числовой;

    текстовый;

  • дата / время;

    денежный;

    логический;

Ключи

    Суперключ - это одно или несколько полей таблицы, которые однозначно определяют каждую строку в таблице

    Потенциальный (возможный) ключ это суперключ ключ, который содержит минимальный табор полей, необходимых для однозначной идентификации каждой строки в таблице.

    Первичный ключ – это потенциальный ключ, выбранный, для однозначной идентификации каждой строки в таблице; обычно выбирают наиболее простой для ввода потенциальный ключ, как правил, числовой.

Ключевое поле таблицы в СУБД Access – это первичный ключ таблицы.

Виды реляционных отношений

    один-к-одному;

Каждому значению первичного ключа в главной таблице соответствует одна или не одной записи в подчиненной таблице.

Отношения этого типа используются не очень часто, поскольку большая часть сведений, связанных таким образом, может быть помещена в одну таблицу. Отношение «один-к-одному» может использоваться для разделения таблиц, содержащих много полей, для отделения части таблицы по соображениям безопасности, а также для сохранения сведений, относящихся к подмножеству записей в главной таблице.

    один-ко-многим;

Каждому значению первичного ключа в главной таблице соответствует одна, несколько или ни одной записи в подчиненной таблице.

Отношение «один-ко-многим» является наиболее часто используемым типом связи между таблицами.

    многие-ко-многим.

При отношении «многие-ко-многим» одной записи в таблице A могут соответствовать несколько записей в таблице B, а одной записи в таблице B несколько записей в таблице A. Отношение «многие-ко-многим» представляет собой два отношения «один-ко-многим» с третьей таблицей.

Организация межтабличных связей

    один-к-одному – таблицы, связываются по их первичным ключам (первичные ключи обеих таблиц устанавливают одинаковыми);

    один-ко-многим –главная таблица (один) связывается по первичному ключу с подчиненной таблицей (многие) по внешнему ключу (это первичный ключ главной таблицы, вставленный в подчиненную таблицу)

    многие-ко-многим – для организации такой связи между двумя таблицами создается третья (промежуточная) таблица, в которую вставляются первичные ключи первых двух таблиц. Связываются между собой первая и третья, а также вторая и третья таблицы, тип связи один–ко-многим.

Пример организации БД

Условия целостности данных

Условие целостности служит для обеспечения соответствия записей в подчиненной таблице записям главной таблицы, т.е. удалять данные из ключевого поля главной таблицы нельзя.

Операции каскадное обновление и каскадное удаление связных полей, разрешают операции редактирования и удаления данных в ключевом поле главной таблице, но сопровождаются автоматическими изменениями в связанной таблице.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: