Солнечная генерация. Перспективы солнечной энергетики

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация» . Наиболее эффективные пути его обеспечения следующие:

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта . Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели :

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в .

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar . Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Интерес вызывает и крупнейшая плавучая СЭС в Китае . Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.


Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ . Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Все комментарии о перспективах солнечной энергетики делятся на 2 категории: «Вот молодцы, а мы только нефть жгем» и "EROEI ! Производство солнечных батарей требует больше энергии чем они производят!".

Въедливый читатель наверняка подумает: Как это производит меньше, чем требуется на производство? Их же поставил - они работают, каши не просят, 10 лет, 50 лет, 100 лет - значит суммарная произведенная энергия равна бесконечности, и они должны быть выгодны при любой стоимости постройки…

Как обстоит все на самом деле, какие есть подходы к солнечной генерации, что ограничивает КПД солнечных элементов, какие гениальные идеи уже были реализованы и почему солнечная энергетика как-то не активно захватывает мир - см. ниже.

Сколько энергии мы получаем от солнца?

На каждый квадратный метр от солнца приходит 1367 Ватт энергии (солнечная постоянная). До земли через атмосферу - доходит порядка 1020 Ватт (на экваторе). Если у нас КПД солнечного элемента 16% - то с квадратного метра мы можем получать в лучшем случае 163,2 Ватта электричества. Но ведь у нас есть погода, солнце не в зените, иногда бывает ночь (разной длительности) - как это все посчитать?

Годовая инсоляция все это учитывает, включая и тип установки солнечной батареи (параллельно земле, под оптимальным углом, со слежением за солнцем) и дает нам понять, сколько электричества можно будет выработать за год в среднем (в кВт*ч/м 2 , без учета КПД солнечной батареи):

Т.е. мы видим, что если мы возьмем 1 км2 солнечных батарей, установим под оптимальным углом в Москве (40.0°), то за год сможем выработать 1173*0.16 = 187.6 ГВт*ч. При цене 3 рубля за кВт/ч _условная_ стоимость сгенерированной энергии будет - 561 млн рублей. Почему условная - выясним ниже.

Основные подходы к получению энергии от солнца

Солнечные тепло-электространции

Огромное поле поворачиваемых зеркал отражает солнце на солнечный коллектор, где тепло превращается в электроэнергию двигателем Стирлинга, или нагревом воды и далее - обычные паровые турбины как на ТЭЦ. КПД - 20-30%.


Также существует вариант с линейным параболическим зеркалом (поворачивать нужно только вокруг одной оси):


Какова цена вопроса? Если посмотреть на электростанцию Ivanpah (392 МВт) в которую опосредованно вложился Google - стоимость её строительства составила 2.2 млрд $, или 5612$ на кВт установленной мощности. В Википедии даже радостно написано, что это хоть и дороже угольных электростанций, но якобы дешевле атомных.

Однако тут есть пара нюансов - 1кВт установленной мощности на АЭС стоит на самом деле 2000-4000$ (в зависимости от того кто строит), т.е. Ivanpah на самом деле уже получается дороже АЭС. Затем, если посмотреть на годовую оценку выработки электроэнергии - 1079 ГВт*ч, и разделить на количество часов в году, то среднегодовая мощность получается 123.1МВт (ведь станция у нас генерирует только днем).

Это доводит «усредненную» стоимость строительства до 17871 $/кВт, что не просто дорого, а фантастически дорого. Дороже наверное только в космосе электричество вырабатывать. Обычные электростанции на газе обходятся в 500-1000$/кВт, т.е. в 18-36 раз дешевле , и работают всегда, а не как повезет.

И последнее - в стоимость строительства не включены аккумуляторы, вообще. Если сюда добавить аккумуляторы (о них ниже) или строительство гидроаккумулирующей электростанции - стоимость вылезет через крышу.

У солнечных теплоэлектростанций есть возможность генерировать электричество круглосуточно, используя большой объем нагретого за день теплоносителя. Такие станции тоже есть, но стоимость их стараются не писать, видимо чтобы никого не пугать.

Полупроводниковые фотоэлементы (фотовольтаика, PV) - идея очень простая, берем полупроводниковый диод большой площади. Когда квант света влетает в pn-переход - генерируются пара электрон-дырка, которые создают перепад напряжения на выводах этого диода (около 0.5В для кремниевого фотоэлемента).


КПД у кремниевых солнечных батарей - около 16%. Почему так мало?

На формирование электронно-дырочной пары требуется определенная энергия, не больше и не меньше. Если квант света прилетает с энергией меньшей, чем нужно - то он не может вызвать генерацию пары, и проходит через кремний как через стекло (потому кремний прозрачен для инфракрасного света дальше 1.2мкм). Если квант света прилетает с энергией большей чем нужно (зеленый свет и короче) - пара генерируется, но лишняя энергия теряется. Если энергия еще выше (синий и ультрафиолетовый свет) - квант может просто не успеть долететь до глубины залегания p-n перехода.

Помимо этого, свет может отразиться от поверхности - чтобы избежать этого на поверхность наносят анти-отражающее покрытие (как на линзах в фотообъективах), и могут поверхность сделать в виде гребенки (тогда после первого отражения у света будет еще один шанс).

Увеличить КПД выше 16% у фотоэлементов можно комбинируя несколько разных фотоэлементов (на основе других полупроводников, и соответственно с другой энергией требуемой для генерации пары электрон-дырка) - сначала ставим тот, что эффективно поглощает синий свет, а зеленый, красный и ИК - пропускает, затем зеленый, и на конец красный и ИК. Именно на таких 3-х ступенчатых элементах и достигаются рекордные показатели эффективности в 44% и выше.

К сожалению, 3-х ступенчатые фотоэлементы оказываются очень дорогими, и сейчас балом правят обычные дешевые одноступенчатые кремниевые фотоэлементы - именно за счет очень низкой цены они вырываются вперед по показателю Ватт/$, Стоимость одного ватта для кремниевых фотоэлементов с вводом гигантских производств в Китае опустилась до ~0.5$/Ватт (т.е. за 500$ можно купить солнечных элементов на 1000 Ватт).

Основные типы кремниевых элементов - монокристаллические (более дорогие, чуть выше КПД) и поликристаллические (дешевле в производстве, буквально на 1% меньше КПД). Именно поликристаллические солнечные батареи сейчас дают самую низкую стоимость 1 Ватта генерируемой мощности.

Из проблем - солнечные батареи не вечные. Даже если не брать в расчет пыль и грязь (надеемся на дождь и ветер), за счет фотодеградации за 20 лет эксплуатации лучшие кремниевые элементы теряют ~15% мощности. Возможно дальше деградация замедляется, но это все равно нужно учитывать.

Пройдемся теперь по основным попыткам увеличить экономическую эффективность:

А давайте возьмем маленький высокоэффективный фотоэлемент и параболическое зеркало
Это называется concentrated photovoltaics. Идея в принципе неплоха - зеркало дешевле, чем солнечная батарея, да и КПД можно иметь 40% а не 16… Проблема только с тем, что теперь нужна (ненадежная) механика для слежения за солнцем, и наша огромная поворотная тарелка должна быть достаточно прочной, чтобы противостоять порывам ветра. Другая проблема - когда солнце заходит за не слишком плотные тучи - выработка энергии падает до нуля, т.к. параболическое зеркало не может рассеянный свет фокусировать (у обычных солнечных батарей выработка конечно падает, но не до 0).

С падением цен на кремниевые солнечные батареи этот подход оказался слишком дорогим (как по установочной стоимости, так и обслуживанию)

А давайте сделаем солнечные элементы круглыми, разместим на крыше, а крышу покрасим в белый цвет
Этим занималась печально известная нынче компания Solyndra, с подачи Барака Обамы получившая гос.гарантию по кредиту в 535 миллионов долларов от американского министерства энергетики… и внезапно объявившая банкротство. Круглые солнечные батареи делали, напыляя слой полупроводника (в их случае Copper indium gallium (di)selenide) на стеклянные трубы. Эффективность солнечных батарей получалась 8.5% (да, получилось хуже простых и дешевых кремниевых).

Яркий пример того, как американский капитализм при должном лоббировании способен по инерции вкачать огромные ресурсы в принципиально не эффективные технологии. По результатам работы никого не посадили.

Дорога ложка к обеду

Теперь после этого буйства непрерывного усовершенствования технологий открываем грустную страницу истории. Солнечные электростанции генерируют электричество днем, а оно больше всего нужно вечером:


Это значит, что если аккумуляторов у нас нет, электростанции на вечерний пик потребления все равно строить придется, а днем - часть должны быть выключены, а часть - находиться в горячем резерве, чтобы если тучки соберутся над солнечной электростанцией - мгновенно заместить выпавшую солнечную генерацию.

Получается, если мы обязываем покупать электричество у солнечных электростанций по обычной цене тогда, когда оно у них генерируется - мы фактически перераспределяем прибыль от существующих классических генерирующих мощностей, которые вынуждены днем простаивать в резерве в пользу солнечных.

Есть и такой интересный вариант - если где-то вечерний пик потребления - где-то на земле разгар дня. Может строить солнечную электростанцию именно там, а электричество передавать по ЛЭП? Это возможно, но требует передачи энергии на расстояния порядка 5-8 тыс км, что также требует огромных капитальных затрат (по крайней мере пока мы не перешли на сверхпроводники) и согласований с кучей стран. Примерно в этом направлении развивался проект Desertec - генерация в Африке, передача в Европу.

Аккумуляторы

Итак, 1 Вт солнечная батарея стоит 0.5$. За день она сгенерирует допустим 8Вт*ч электричества (за 8 солнечных часов). Как нам эту энергию сохранить до вечера, когда она будет больше всего нужна?

Китайские литиевые аккумуляторы стоят примерно 0.4$ за Вт*ч, соответственно, на 1Вт солнечной батареи (ценой в 0.5$) нам понадобится аккумуляторов на 3.2$, т.е. аккумулятор получается в 6 раз дороже солнечной батареи! Помимо этого нужно учитывать, что через 1000-2000 циклов заряд-разряд аккумулятор придется заменить, а это всего 3-6 лет службы. Может есть аккумуляторы дешевле?

Самые дешевые - свинцово-кислотные (которые естественно далеко не «зеленые»), их оптовая цена - 0.08$ за Вт*ч, соответственно, на сохранение дневной выработки нам нужно аккумуляторов на 0.64$, что снова больше стоимости самих солнечных батарей. Свинцовые аккумуляторы также быстро умирают, 3-6 лет службы в таком режиме. Ну и на десерт - КПД свинцовых аккумуляторов - 75% (т.е. четверть энергии теряется в цикле заряд-разряд).

Существует также вариант с гидроаккумулирующими электростанциями (днем - закачиваем воду «вверх» насосом, ночью - работаем как обычная гидроэлектростанция) - но их строительство также обходится дорого, и не везде возможно (КПД - до 90%).

Из-за того, что аккумуляторы получаются дороже самой солнечной электростанции, в крупных электростанциях их и не предусматривают, продавая электричество в распределительную сеть сразу по мере генерации, рассчитывая ночью и вечером на обычные электростанции.

Какова же справедливая цена нерегулируемой солнечной генерации?

Возьмем например Германию, как лидера по развитию солнечной энергетики. Каждый кВт сгенерированный солнечными электростанциями там выкупают по 12.08-17.45 евроцентов за кВт*ч, не взирая на то, что генерируют они в дневной минимум потребления. Все чего они добиваются этим - экономия Российского газа, т.к. газовые электростанции все равно должны быть построены и быть в горячем резерве (и все их остальные расходы остаются неизменными - зарплаты, кредиты, обслуживание).

С экономической точки зрения, было бы справедливо, если бы солнечные электростанции получали ровно столько, сколько они позволяют сэкономить на топливе газовым электростанциям.

Допустим стоимость российского газа - 450 $ за 1 тыс. м3. Из этого объема можно выработать 39000 ГДж ≈10.8*0,4 GWh ≈ 4.32 GWh электричества (при КПД генерации 40%), соответственно, на 1 кВт*ч солнечного электричества мы экономим российского газа на 0.104$ = 7.87 евроцента. Именно такая должна быть справедливая стоимость нерегулируемой солнечной генерации, и похоже Германия постепенно идет к этой цифре, но на данный момент солнечная энергетика в Германии получается на 50% дотируемой.

Резюме

Поликристаллические солнечные батареи дают самое дешевое солнечное электричество, порядка 0.5$/Ватт, остальные способы намного дороже.

Проблема солнечной энергетики не в КПД солнечных элементов, не в EROEI (он действительно в теории бесконечен), и не в их цене - а в том, что сгенерированную энергию очень дорого хранить до вечера. Т.е. основная проблема - аккумуляторы, которые сейчас уже дороже, чем солнечные батареи и при этом имеют короткий срок службы (3-6 лет).

На данный момент крупномасштабную солнечную генерацию без аккумуляторов можно рассматривать только как способ сэкономить днем небольшую часть ископаемого топлива, она принципиально не может уменьшить количество необходимых классических электростанций (газовых, угольных, АЭС, гидро) - они все равно должны стоять в резерве днем, и полностью брать на себя нагрузку в вечерний пик потребления.

Если в будущем с помощью (жестоких) тарифов удасться сместить пик потребления на день - строительство солнечных электростанций обретет бОльший смысл (например, если тарифы будут такие, что будет выгодно включать электролизное производство алюминия и водорода только днем).

Стоимость «нерегулируемой» солнечной генерации нельзя сопоставлять со стоимостью генерации на классических электростанциях - т.к. они генерируют когда получится, а не когда нужно. Справедливая стоимость нерегулируемой солнечной электроэнергии должна быть равна стоимости сэкономленного ископаемого топлива, и не более - для газа по 450$ справедливая цена солнечной генерации не выше 0.1$ за 1кВт*ч (соответственно, в Германии солнечная генерация дотируется на ~50%).

«Честная» солнечная энергетика (с аккумуляторами) сегодня может быть экономически оправданна лишь в удаленных районах, где нет возможности подключиться к сети (как например в случае отдаленной, одиноко стоящей базовой станции сотовой связи).

Самая большая проблема солнечной энергетики - ископаемое топливо пока слишком дешевое, чтобы солнечная генерация была экономически оправданной.

Солнечный генератор является отличной альтернативой: он безопасен, может работать долго, в нем не нужно заменять топливо, плюс он не наносит вреда окружающей среде. Переносной солнечный генератор вполне можно собрать своими руками, стоит только следовать этим инструкциям.

Основой генератора является батарея, которая заряжается с помощью солнечных панелей. Батарея может запитать 12В лампу и одну электрическую розетку, используя преобразователь. В отличие от бензиновых или дизельных генераторов этот генератор может быть использован прямо в помещении, он не дает выхлопа и работает совершенно бесшумно. Количество генерируемой энергии регулируется исключительно емкостью батареи, поэтому вы можете собрать именно такой генератор, который вам нужен.

Можно собрать два типа генератора: "все-в-одном", где являются частью самого генератора, или раздельный вариант, в котором солнечная панель прикреплена к стене или крыше дома, а остальной механизм подключается к ней, когда нужно зарядить батарею. В обоих случаях сборка одинаковая, отличается только кожух. Раздельный генератор лучше выбирать, если вам нужно снабдить электроэнергией дачный домик или гараж, тогда как "все-в-одном" предпочтительнее, когда электроэнергия вам нужна буквально "на ходу".

Для сборки солнечного генератора вам понадобятся:

· Солнечная фотогальваническая панель - собирает солнечный свет и преобразует его в электроэнергию;

· Батарея 12В - аккумулирует энергию для дальнейшего использования;

· Контроллер заряда - останавливает работу панели, чтобы не допустить избыточной зарядки батареи;

· Преобразователь напряжения 12В-240Вт - преобразовывает полученное напряжение в переменный ток 240Вт;

· Энергосберегающая лампа на 12В (опционально) - энергоэффективный способ обеспечить яркое освещение;

· Кейс от набора инструментов (опционально) - исполняет роль кожуха для генератора.

Расчет требуемой мощности

Размер различных частей зависит от того, сколько электроэнергии вы хотите получить на выходе и как долго ваш генератор должен работать. Типичное отключение электроэнергии обычно длится меньше одного часа и в совсем редких случаях - меньше 4 часов. Во время этого отключения большинство жителей современных домов хочет, чтобы продолжал работать холодильник, и было освещение. С этими требованиями может справиться даже самая небольшая солнечная батарея.

В течение 24 часов среднестатистический домовладелец тратит около 800-1000 Вт в час . В чрезвычайных ситуациях это потребление снижается до 75-200 Вт в час - этого как раз хватает на освещение и питание таких требующих непрерывной подачи электроэнергии приборов, как холодильник или морозильная камера. На каждые 100 Вт*час вам требуется батарея емкостью 10 А*час . Таким образом, для получения 200 В т в течение четырех часов вам нужна батарея емкостью 80 A *час .

Нам понадобится свинцово-кислотная батарея (называемая также тяговой батареей). Такие батареи выглядят так же, как автомобильные аккумуляторы, но имеют другой химический и механический состав. Для нашего генератора нельзя использовать автомобильные аккумуляторы, потому что их конструкция не предполагает полную разрядку, и они испортятся, как только это произойдет. Свинцово-кислотные батареи можно купить в специализированных магазинах, где продаются батареи и автомастерских.

Когда вы рассчитаете емкость батареи, можно вычислить размер солнечной панели. Он будет зависеть от того, как часто вы планируете использовать генератор, насколько велика емкость батареи и сколько солнечного света проникает в ту местность, где вы планируете его использовать. Если солнечная панель будет установлена снаружи в южном направлении под углом приблизительно 45°С, она будет производить зимой за день примерно в 2-2.5 раза больше , чем указано в технических характеристиках, а летом - больше в 4-8 раз .

Обязательным требованием является быстрая подзарядка, чтобы генератор достаточно скоро снова стал готов к использованию. Однако если вы выберете слишком большую солнечную панель, ее будет очень сложно окупить, а большинство вырабатываемой ею энергии будет уходить в никуда. Компромиссным решением будет приобретение батареи, полная подзарядка которой будет занимать около 10-15 дней . Не пытайтесь заряжать батарею частично, это быстро приведет ее в негодность. Всегда можно дополнить солнечную панель другим источником питания, чтобы быстрее зарядить батарею.

Чтобы рассчитать мощность солнечной панели, возьмите емкость батареи в А*час и умножьте ее на количество В (обычно 12). Разделите полученное число на 2.5 (часа на подзарядку солнечной энергией в день в зимнее время) и разделите на количество дней, за которое вы предполагаете полностью заряжать батарею. Число, которое получится в результате, и есть мощность солнечной панели (в Вт).

Например, батарея с показателями 12В 80А*час дает 960Вт*час энергии.

960/2.5 часа = 384.

384/15 дней = 25.6 Вт - такова требуемая мощность солнечной панели.

Преобразователи напряжения

Преобразователи берут напряжение 12В из батареи и преобразовывают его в переменный ток 240В. Существует множество вариантов преобразователей мощностью от 75Вт до 3КВт, и очень важно не перегружать их. Преобразователи могут сильно нагреваться во время работы, поэтому если вы хотите поместить детали генератора в кейс, очень важно оставить достаточно места вокруг преобразователя, чтобы не перегреть остальные элементы. Во время покупки преобразователя рекомендуем выбирать тот, в котором есть защита от недостатка мощности. Когда заряда в батарее останется совсем мало, преобразователь выключится, вместо того, чтобы разряжать батарею полностью. Полная разрядка свинцово-кислотной батареи опасна тем, что может повредить или разрушить батарею, так что лучше этого избегать.

Сколько мощности потребляют устройства

Вы можете узнать, сколько мощности потребляют используемые вами устройства, прочитав информацию либо на задней панели или дне устройства, либо на наклейке на адаптере. Чаще всего эти данные указываются в вольтах и амперах. Например, преобразователь ноутбука может иметь напряжение 19.5В и силу тока 4.5А. Перемножив две эти величины, можно узнать, сколько ватт в час использует устройство - таким образом, получим, что ноутбук потребляет максимум 88Вт*час .

Сложно привести здесь таблицу потребления электроэнергии, так как требования сильно различаются от модели к модели даже одного устройства. Кроме того, многое зависит от класса энергоэффективности устройства. Примерный расход основных приборов указан в таблице 1:

Таблица 1. Потребление энергии различными приборами.

Энергосберегающая лампа

Холодильник класса А

Морозильная камера класса А

Холодильник класса F

150-180В*час

Барабанная сушилка

1200-1400В*час

Посудомоечная машина класса А

Посудомоечная машина класса Е

150-200В*час

Персональный компьютер с монитором

350-450В*час

24" ЭЛТ телевизор

15" телевизионная плоская панель

32" телевизионная плоская панель

240-300В*час

Маленькая микроволновая печь

Большая микроволновая печь

Энергоэффективный пылесос

Вентилятор

Энергоэффективный чайник

Как видно из этой таблицы, в каждом доме находятся приборы, которые потребляют очень много электроэнергии. Когда вы планируете свой генератор, таких приборов по возможности нужно избегать. Например, вместо того чтобы разрабатывать солнечную батарею больших размеров, гораздо эффективнее перейти на обогрев помещения и приготовление пищи с помощью газа.

Выбор солнечной фотогальванической панели.

Существует два вида солнечных панелей - аморфные и кристаллические.

Аморфные панели больше по размеру, так как они наименее эффективны под прямыми солнечными лучами. Зато такие панели генерируют большую часть энергии в условиях слабого освещения и могут заряжаться даже от лунного света и уличных фонарей.

Кристаллические панели меньше аморфных примерно в 3 раза, что делает их портативными и более простыми в установке. Их цена выше, чем у аморфных панелей, однако можно найти варианты, сходные по цене.

Сборка генератора

Шаг 1 - монтаж генератора

Для начала мы взяли старый источник бесперебойного питания без батареи, вскрыли его и вынули все части из кожуха. Вы, конечно, можете оставить кожух: между нами, это гораздо безопаснее, чем валяющиеся тут и там провода, подключенные к 230В. Но мы хотели поместить генератор в пластиковый кейс для инструментов, чтобы генератор было удобно переносить. В ИБП первым делом нужно отключить сигнал, который непрерывно пищит при отключении электроэнергии. Это было достигнуто путем отсоединения спикера с помощью небольшой отвертки. После чего все батареи были соединены параллельно между собой и присоединены к ИБП.

При присоединении батарей очень важно соблюдать полярность. Так как они присоединены параллельно, наш генератор будет работать даже в случае неверной полярности некоторых из них, но тогда батареи быстро будут выходить из строя.

Проверка шага 1

Прежде чем присоединять солнечную панель, необходимо убедиться в том, что генератор работает. У нас было 2 12В батареи, одна емкостью 14А*час, вторая - 4.5А*час, что в сумме дало 18А*час , с которыми можно было работать. Принимая во внимание КПД батарей и утечки через преобразователь, мы должны были получить приблизительно 200Вт мощности - достаточно для того, чтобы запитать дом в чрезвычайной ситуации на 2 часа .

После включения ИБП в сеть и полной зарядки батарей мы отключили устройство от сети, подключили к нему телевизор, ноутбук и настольную лампу и оставили эти приборы включенными до тех пор, пока батареи не сели. Суммарная мощность, которая требовалась этим приборам, равнялась 189Вт . Генератор смог поддерживать питание 1 час 4 минуты до полной разрядки - всего 201Вт мощности .

Шаг 2 - присоединение солнечной батареи

Контроллер заряда - один из самых важных частей этого набора, он не дает батареям перезарядиться. Избыточный заряд очень опасен для батарей, так как может их испортить. В самом худшем случае батареи могут загореться или взорваться. Контроллер и панель были подключены, как указано на рисунке:

Проверка шага 2

Мы вынесли генератор наружу, так как день был достаточно солнечным, и проверили его тестером, чтобы никто не ударился током о корпус ИБП. Наша панель посылала приблизительно 720-780мА на батареи, что эквивалентно примерно 9Вт мощности при 17.2В - вполне достаточно для подзарядки 12В батарей. Исходя из этого, было подсчитано, что полная зарядка батарей займет от 3 до 7 дней , если панель будет получать хотя бы немного прямого солнечного света каждый день.

Шаг 3 - окончательная сборка

Последним шагом является помещение всей конструкции в кейс. Нашей целью была переносная система, поэтому очень важно убедиться в том, что батареи уложены тщательно. Мы использовали широкие липучки, чтобы все хорошо закрепить. Солнечная панель была прикреплена к внешней поверхности кейса с помощью строительного цемента. После чего все остальные детали были уложены в кейс так, чтобы снаружи нельзя было получить смертельный заряд от проводов.

Проверка шага 3

Мы еще раз проверили все с помощью тестера. После чего запитали батареи и попробовали поработать на свежем воздухе дрелью. Все работало так, как ожидалось.

Подводя итог

Для устройства стоимостью менее £50 у нас получился отличный солнечный генератор. Его можно взять с собой куда угодно, использовать как снаружи, так и в помещении. Он может быть заряжен быстро от сети и медленно от солнечной батареи. Он может как выдавать много энергии сразу - до 10А в случае необходимости - так и обеспечивать меньшую мощность для поддержания работы необходимых электроприборов в течение 2 часов в случае отключения электроэнергии. Также он удобен при переноске, поэтому можно легко получить электроэнергию там, где это необходимо, например, в саду. А благодаря отсутствию вредных выхлопов его можно использовать в неснабженных электричеством помещениях, что намного безопаснее, чем протянутые по полу провода.


Статья переведена с английского языка специально для интернет-портала "Энергоэффективная Россия"


Энтузиасты создали «волшебный» чемоданчик, который позволит заряжать свои мобильные устройства, ноутбуки и даже налаживать освещение там, где нет электричества. Все что нужно новинке – солнечный свет.

Ученые, размышляющие, о цивилизационном развитии разумных форм жизни считают, что характеризовать их нужно в первую очередь по принципу того, как данная форма получает для своих нужд энергию. Первый этап – получение энергии из ресурсов, человечество уже минуло, и сейчас находиться в начале второго, переходного этапа своего развития – использовании энергии самого космоса.


Хотя сегодня получение электроэнергии при помощи сжигания сырья остается одним из самых популярных способов, генераторы, основанные на получении солнечной энергии, стремительно набирают популярность. Вторгается солнечная энергия в нашу цивилизацию не только на уровне высокой науки и техники, но и на вполне бытовом уровне. Уже сегодня есть множество устройств, позволяющих получать солнечную энергию. Одним из таких является и недавно созданный Kalipak Portable Solar Generator.


Название данного девайса говорит все и сразу, что о нем вообще следует знать, во всяком случае, в общих чертах. В сложенном виде выглядит Kalipak Portable Solar Generator, как чемоданчик. Первое, что следует знать, что это электрический генератор, способный аккумулировать солнечную энергию. Получение энергии производится, как несложно догадаться, при помощи раскладных солнечных батарей. Мощность солнечных панелей 20 Ватт. Вторая важная деталь – это аккумуляторы. В Kalipak используются литий-ионные батареи. Заряжать их можно как от солнца, так и предварительно от электросети дома.

Передавать имеющийся заряд энергии Kalipak может почти любым устройствам. Для этого предусмотрены сразу 4 сверхмощных USB-разъёма. Помимо них есть еще 2 отдельных порта на 12 В, которые можно использовать, например, для налаживания освещения. Что касается емкости батарей, то полного заряда хватит, чтобы зарядить 32 iPhone или 10 ноутбуков.

Отдельно следует отметить, что в переносном генераторе имеется свой жесткий диск для хранения информации с мобильных устройств и компьютеров. Есть также возможность синхронизировать датчики чемоданчика с мобильными устройствами на базе операционных систем iOS и Android.

В продолжение темы , которым не страшна самая страшная стихия.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: