Какой тип экрана выбрать: IPS или TFT? Дисплей IPS или TFT лучше? TFT-дисплей: описание, принцип работы

Экран — один из самых важных компонентов смартфона, он занимает почти всю его лицевую поверхность и должен нравиться пользователю. Вкусы у всех разные: кто-то любит естественные цвета жидкокристаллических экранов, кто-то ядовитые и яркие экранов AMOLED. Давайте разберемся, в чем разница между ними и откуда она взялась.

В LCD-экранах пиксели сделаны из жидких кристаллов, в каждом пикселе три субпикселя: красный, зеленый и синий. Сами по себе жидкие кристаллы не светятся, поэтому им нужна излучающая свет подложка. В AMOLED-экранах применяются светодиоды, и, как понятно из их названия, они умеют светиться сами, дополнительная подсветка им не нужна. Черный цвет у AMOLED почти идеальный: пиксели не светятся, подсветки нет. У LCD-экранов черный может оказаться серым или фиолетовым, а небольшой брак при производстве скажется на неравномерности подсветки: у дешевых аппаратов по краям могут быть белые светящиеся полосы.

Самое главное отличие между LCD и AMOLED - в отображаемых цветах, они разные. Экраны AMOLED охватывают весь цветовой спектр sRGB и выходят за его рамки, что приводит к неестественной перенасыщенности некоторых цветов.

На спектрограмме это выглядит так:

Треугольник с черными ребрами - гамма цветности sRGB, с белыми - охват AMOLED-экрана Samsung Galaxy S4. Можно заметить, что в гамме Galaxy S4 неестественно много синего и зеленого. Точками показано, насколько равномерно происходит изменение оттенков цвета. В идеале расстояние между точками должно быть одинаковым.

Качественный жидкокристаллический экран почти идеально вписывается в гамму sRGB. Правда, в последнее время некоторые производители LCD-экранов стараются приблизить их насыщенность к стандартам AMOLED, и в результате получают не только неестественный цвет, но и неравномерный переход оттенков. Так выглядит спектрограмма LG G2 с перенасыщенным и неравномерным зеленым:

А так - HTC One с чуть более естественными цветами:

В последнее время производители смартфонов с AMOLED-экранами борются за естественность: у недавних флагманов Nokia и Samsung появились настройки, где можно указать желаемую цветовую температуру экрана и выправить насыщенность цветов.

Углы обзора качественных экранов близки к идеальным 180 градусам, но под большим наклоном цвета все равно искажаются: у LCD становятся еще более бледными, а у AMOLED переливаются то красным, то зеленым, то синим. В некоторых экранах AMOLED используется структура PenTile с уменьшенным числом субпикселей (например, у Galaxy S4 пять субпикселей на два пикселя). Чаще всего пиксели на таких экранах видны невооруженным взглядом, хотя на экранах LCD с тем же разрешением они незаметны.

Поскольку AMOLED-экран не требует подсветки, потребление энергии зависит от того, с какой яркостью светятся его пиксели: на темной картинке энергопотребление снижается, на светлой увеличивается. LCD-экран расходует энергию почти линейно, независимо от кого, какие цвета показывает. Пиксели разных цветов в AMOLED потребляют разное количество энергии. Больше всего электричества требуют синие пиксели, поэтому они быстрее выгорают, после чего изображение становится блеклым и неестественным.

Какой экран лучше, зависит прежде всего от производителя. Качественный FullHD-экран LCD, безусловно, выиграет у AMOLED-матрицы с низким разрешением и структурой PenTile. Если говорить об экранах современных флагманов, то выбор зависит только от вкусов пользователя, что он предпочитает: бледные, но естественные цвета, яркие, перенасыщенные, но с настоящим черным или вообще без разницы.

Рассказывающая об отличиях IPS и TN матриц в рамках советов при покупке монитора или ноутбука. Пришло время поговорить о всех современных технологиях производства дисплеев , с которыми мы можем столкнуться и иметь представление о видах матриц в устройствах нашего поколения. Не путайте с LED, EDGE LED, Direct LED — это типы подсветки экранов и к технологии создания дисплеев имеют косвенное отношение.

Наверное, каждый может вспомнить свой монитор с электронно-лучевой трубкой, которым пользовался ранее. Правда и до сих пор встречаются пользователи и поклонники ЭЛТ технологии. В настоящее время экраны увеличились в диагонали, поменялись технологии изготовления дисплеев, стало все больше разновидностей в характеристиках матриц, обозначающихся аббревиатурами TN, TN-Film, IPS, Amoled и т.д.

Информация в данной статье поможет выбрать себе монитор, смартфон, планшет и другую различного рода технику. Помимо этого, позволит осветить технологии создания дисплеев, а также типы и особенности их матриц.

Пару слов о жидкокристаллических дисплеях

LCD (Liquid Crystal Display — жидкокристаллический дисплей) — это дисплей, изготовленный на основе жидких кристаллов, которые меняют свое расположение при подаче на них напряжения. Если вы близко подойдете к такому дисплею и внимательно присмотритесь к нему, то заметите, что он состоит из маленьких точек – пикселей (жидких кристаллов). В свою очередь каждый пиксель состоит из красного, синего и зеленого субпикселей. При подаче напряжения субпиксели выстраиваются в определенном порядке и пропускают через себя свет, таким образом формируя пиксель определенного цвета. Множество таких пикселей формируют изображение на экране монитора или другого устройства.

Первые мониторы массового производства оснащались матрицами TN — обладающими самой простой конструкцией, но которые нельзя назвать самым качественным типом матрицы. Хотя и среди данного типа матриц имеются весьма качественные экземпляры. Данная технология основана на том, что при отсутствии напряжения субпиксели пропускают через себя свет, формируя на экране белую точку. При подаче напряжения на субпиксели, они выстраиваются в определенном порядке, образуя собой пиксель заданного цвета.

Недостатки TN матрицы

  • По той причине, что стандартный цвет пикселя, при отсутствии напряжения, белый, данный тип матриц обладает не самой лучшей цветопередачей. Цвета отображаются более тускло и блекло, а черный цвет выглядит скорее темно-серым.
  • Еще одним главным недостатком TN матрицы являются малые углы обзора. Частично с данной проблемой попытались справиться улучшением технологии TN до TN+Film, с помощью дополнительного слоя, нанесенного на экран. Углы обзора стали больше, но все равно оставались далеки от идеала.

В настоящий момент TN+Film матрицы полностью заменили TN.

Достоинства TN матрицы

  • малое время отклика
  • относительно недорогая себестоимость.

Делая выводы, можно утверждать, что при необходимости в недорогом мониторе для офисной работы или серфинга в интернете, мониторы с TN+Film матрицами подойдут наилучшим образом.

Главное отличие технологии IPS матриц от TN — перпендикулярное расположение субпикселей при отсутствии напряжения, которые образуют черную точку. То есть, в состоянии спокойствия экран остается черным.

Преимущества IPS матриц

  • лучшая цветопередача относительно экранов с TN матрицами: вы имеете яркие и сочные цвета на экране, а черный цвет остается действительно черным. Соответственно, при подаче напряжения пиксели меняют свой цвет. Учитывая эту особенность, владельцам смартфонов и планшетов с IPS-экранами можно посоветовать использовать темные цветовые схемы и обои на рабочем столе, тогда смартфон от аккумулятора будет работать немного дольше.
  • большие углы обзора. В большинстве экранов они составляют 178°. Для мониторов, а особенно для мобильных устройств (смартфонов и планшетов) эта особенность является важной при выборе пользователем гаджета.

Недостатки IPS матриц

  • большое время отклика экрана. Это влияет на отображение в динамических картинках, таких как игры и фильмы. В современных IPS панелях с временем отклика дела обстоят получше.
  • большая стоимость по сравнению с TN.

Подводя итоги, телефоны и планшеты лучше выбирать с IPS-матрицами, и тогда от использования устройства пользователь будет получать огромное эстетическое удовольствие. Матрица для монитора не является столь критичной, современные .

AMOLED-экраны

Последние модели смартфонов оснащают AMOLED-дисплеями. Данная технология создания матриц основана на активных светодиодах, которые начинают светиться и отображать цвет при подаче на них напряжения.

Давайте рассмотрим особенности Amoled матрицы :

  • Цветопередача . Насыщенность и контрастность таких экранов выше требуемого. Цвета отображаются настолько ярко, что у некоторых пользователей могут уставать глаза при продолжительной работе со своим смартфоном. Зато черный цвет отображается еще более черным, чем даже в IPS-матрицах.
  • Энергопотребление дисплея . Так же как и в IPS, отображение черного цвета требует меньше энергии, чем отображение определенного цвета, и тем более белого. Но разница в энергопотреблении между отображением черного и белого цвета в AMOLED-экранах намного больше. Для отображения белого цвета необходимо в несколько раз больше энергии, чем для отображения черного.
  • «Память картинки» . При продолжительном выводе статического изображения могут оставаться следы на экране, а это в свою очередь сказывается на качестве отображения информации.

Также из-за своей довольно высокой стоимости AMOLED-экраны пока используются только в смартфонах. Мониторы, построенные на такой технологии, стоят неоправданно дорого.

VA (Vertical Alignment) — данную технологию, разработанную Fujitsu, можно рассматривать как компромисс между TN и IPS матрицами. В матрицах VA кристаллы в выключенном состоянии расположены перпендикулярно плоскости экрана. Соответственно черный цвет обеспечивается максимально чистый и глубокий, но при повороте матрицы относительно направления взгляда, кристаллы будут видны не одинаково. Для решения проблемы применяется мультидоменная структура. Технология Multi-Domain Vertical Alignment (MVA) предусматривает выступы на обкладках, которые определяют направление поворота кристаллов. Если два поддомена поворачивается в противоположных направлениях, то при взгляде сбоку один из них будет темнее, а другой светлее, таким образом для человеческого глаза отклонения взаимно компенсируются. В матрицах PVA, разработанных Samsung нет выступов, и в выключенном состоянии кристаллы строго вертикальны. Для того, чтобы кристаллы соседних субдоменов поворачивались в противоположных направлениях, нижние электроды сдвинуты относительно верхних.

Для уменьшения времени отклика в матрицах Premium MVA и S-PVA применяется система динамического повышения напряжения для отдельных участков матрицы, которую обычно называют Overdrive. Цветопередача матриц PMVA и SPVA почти так же хороша как и у IPS, время отклика немного уступает TN, углы обзора максимально широкие, черный цвет наилучший, яркость и контраст максимально возможные среди всех существующих технологий. Однако даже при небольшом отклонении направления взгляда от перпендикуляра, даже на 5–10 градусов можно заметить искажения в полутонах. Для большинства это останется незамеченным, но профессиональные фотографы продолжают за это недолюбливать технологии VA.

MVA и PVA матрицы обладают отличной контрастностью и углами обзора, но вот с временем отклика дела обстоят похуже – оно растет при уменьшении разницы между конечным и начальным состояниями пиксела. Ранние модели таких мониторов были почти непригодны для динамичных игр, а сейчас они показывают результаты близкие к TN матрицам. Цветопередача *VA матриц, конечно, уступает IPS-матрицам, но остается на высоком уровне. Тем не менее, благодаря высокой контрастности, эти мониторы будут отличным выбором для работы с текстом и фотографией, с чертежной графикой, а также в качестве домашних мониторов.

В заключении могу сказать, что выбор всегда за вами…

ЖК дисплей на основе микроконтроллера HD44780 является наиболее часто используемым в электроники. Вы можете его встретить в кофейных автоматах, часах, копирах, принтерах, роутерах и т.п. Также данный дисплей используется в LCD шилдах для Arduino .

ЖК дисплей представляет из себя модуль , состоящий из микроконтроллера HD44780 разработанный фирмой Hitachi и непосредственно самим ЖК дисплеем . Микроконтроллер принимает команды и обрисовывает соответствующие символы на ЖК дисплее.

Существует огромное количество разновидностей данного ЖК модуля, он может быть 1,2, 4 –ех строчный с различным числом символов на строке , с подсветкой или без , с различным цветом подсветки и т.п. Объединяет их всех наличие микроконтроллера HD44780 , зная команды которого позволит нам без проблем использовать в своих проектах ту или иную модификацию .

Предисловие

Для работы с дисплеями на основе HD44780 создано большое количество библиотек как на ассемблере так и на СИ , также для Arduino существует своя библиотека «LiquidCrystal ».

Для изучения я решил не использовать наработки, а поработать с ним на «низком уровн е», подергать его ножки самим , тем самым я получу представление о его работе. Полученные навыки позволят мне самому написать библиотеку если в этом будет необходимость.

Где взять первоисточник информации?

Если вы захотите сами разобраться как работать с LCD дисплеем на HD44780 и вникнуть глубже , то в этом вам поможет даташит на микроконтроллер HD44780 , которые легко найти в интернете (но если вам лень, вы можете с сайта).

Изучение я разобью на два этапа

1. Сначалая я приведу матчасть по работе с LCD на HD44780 , этому посвящён данный пост

Вам будет интересно:


Что это - LCD? Если говорить коротко и ясно, это жидкокристаллический экран. Простые приборы, которые имеют такое оснащение, могут работать либо с черно-белым изображением, либо с 2-5 цветами. На данный момент описываемые экраны используются для отображения графической или текстовой информации. Их устанавливают в компьютеры, ноутбуки, телевизоры, телефоны, фотоаппараты, планшеты. Большинство электронных устройств на данный момент работает именно с таким экраном. Одной из популярных разновидностей такой техники является жидкокристаллический дисплей с активной матрицей.

История

Впервые жидкие кристаллы были открыты в 1888 году. Сделал это австриец Рейнитцер. В 1927 году русский физик Фредерикс открыл переход, который был назван в его честь. На данный момент он широко используется при создании жидкокристаллических дисплеев. В 1970 году компания RCA представила первый экран подобного типа. Его сразу стали применять в часах, калькуляторах и других приборах.

Чуть позже был создан матричный дисплей, который работал с черно-белым изображением. Цветной жидкокристаллический экран появился в 1987 году. Его создатель - компания Sharp. Диагональ этого прибора составляла 3 дюйма. Отзывы о LCD-экране такого типа были положительными.

Устройство

Рассматривая LCD-экраны, необходимо упомянуть о конструкции технологии.

Состоит данное устройство из ЖК-матрицы, источников света, которые обеспечивают непосредственно саму подсветку. Имеется пластиковый корпус, обрамленный металлической рамкой. Она необходима для придания жесткости. Также используются контактные жгуты, которые являются проводами.

ЖК-пиксели состоят из двух электродов прозрачного типа. Между ними размещается слой молекул, а также имеется два поляризационных фильтра. Их плоскости перпендикулярны. Следует отметить один нюанс. Он заключается в том, что если бы жидких кристаллов между вышеуказанными фильтрами не существовало, то свет, проходящий через один из них, блокировался бы сразу же вторым.

Поверхность электродов, которая соприкасается с жидкими кристаллами, покрыта специальной оболочкой. За счет этого молекулы движутся в одном направлении. Как уже было сказано выше, в основном они располагаются перпендикулярно. При отсутствии напряжения все молекулы имеют винтовую структуру. За счет этого свет преломляется и проходит через второй фильтр без потерь. Теперь любой человек должен понимать что это - LCD с точки зрения физики.

Преимущества

Если сравнивать с электронно-лучевыми приборами, то здесь выигрывает. Он имеет небольшие размеры и массу. ЖК-устройства не мерцают, у них нет проблем с фокусировкой, а также со сведением лучей, не появляются помехи, которые возникают от магнитных полей, нет никаких проблем с геометрией картинки и ее четкостью. Можно прикрепить дисплей LCD на кронштейнах к стене. Сделать это очень просто. При этом картинка не потеряет своих качеств.

Сколько потребляет ЖК-монитор, полностью зависит от настроек изображения, модели самого прибора, а также от характеристик подачи сигнала. Поэтому этот показатель может как совпадать с потреблением тех же лучевых устройств и плазменных экранов, так и быть гораздо ниже. На данный момент известно, что трата электроэнергии ЖК-мониторов будет определяться мощностью установленных ламп, которые обеспечивают подсветку.

Необходимо также сказать о малогабаритных дисплеях LCD. Что это, чем они отличаются? Большая часть таких приборов не имеет подсветки. Эти экраны используются в калькуляторах, часах. Такие устройства отличаются совершенно низким энергопотреблением, поэтому они могут работать до нескольких лет автономно.

Недостатки

Однако эти приборы имеют и минусы. К сожалению, много недостатков являются трудноустранимыми.

Если сравнивать с электронно-лучевой техникой, то четкое изображение на ЖК-дисплее можно получить лишь при штатном разрешении. Чтобы добиться хорошей характеристики других картинок, придется использовать интерполяцию.

ЖК-мониторы имеют средний контраст, а также плохую глубину черного цвета. Если захочется увеличить первый показатель, то нужно сделать больше яркость, что не всегда обеспечивает комфортный просмотр. Эта проблема заметна в устройствах LCD от Sony.

Скорость смены кадров у ЖК-дисплеев намного меньше, если сравнивать с плазменными экранами или электронно-лучевыми. На данный момент разработана технология Overdrive, однако она не решает проблемы скорости.

С углами обзора также имеются некоторые нюансы. Они полностью зависят от контрастности. У электронно-лучевой техники такой неприятности нет. ЖК-мониторы не защищены от механических повреждений, матрица не покрыта стеклом, поэтому при сильном нажатии можно деформировать кристаллы.

Подсветка

Поясняя, что это такое - LCD, следует сказать и об этой характеристике. Сами кристаллы не светятся. Поэтому для того чтобы изображение стало видимым, необходимо иметь источник света. Он может быть внешним или внутренним.

В качестве первого следует использовать солнечные лучи. Во втором варианте применяется искусственный источник.

Как правило, лампы со встроенной подсветкой устанавливаются сзади всех слоев жидких кристаллов, за счет чего они просвечиваются насквозь. Также встречается боковая подсветка, которая используется в часах. В телевизорах LCD (что это - ответ выше) такой тип конструкции не применяется.

Что касается внешнего освещения, то, как правило, черно-белые дисплеи часов и мобильных телефонов работают при наличии такого источника. Позади слоя с пикселями находится специальная матовая отражающая поверхность. Она позволяет отбивать солнечный свет или же излучение от ламп. Благодаря этому можно использовать такие устройства в темноте, так как производители встраивают боковую подсветку.

Дополнительная информацция

Есть дисплеи, в которых объединены внешний источник и дополнительно встроенные лампы. Ранее в некоторых часах, где был установлен ЖК-экран монохромного типа, использовалась специальная лампа накаливания небольшого размера. Однако из-за того что она потребляет слишком много энергии, такое решение не является выгодным. Подобные устройства уже не используются в телевизорах, так как они выделяют большое количество тепла. Из-за этого жидкие кристаллы разрушаются и перегорают.

В начале 2010 года стали распространенными LCD-телевизоры (что это такое, мы рассмотрели выше), которые имели Такие дисплеи не стоит путать с действительно настоящими LED-экранами, где каждый пиксель светится самостоятельно, являясь светодиодом.

Сейчас технология плоскопанельных мониторов, и жидкокристаллических в том числе, является наиболее перспективной. Хотя в настоящее время на долю ЖК-мониторов приходится лишь около 10% продаж во всем мире, этот сектор рынка является наиболее быстрорастущим (65% в год).

Принцип работы

Экраны LCD-мониторов (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул.
Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 г. Однако долгое время никто не знал, как их применить на практике: есть такие вещества и все, и никому, кроме физиков и химиков, они не были интересны. Итак, жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Впрочем, дальше этого дело не пошло, поскольку технологическая база в то время была еще слишком слаба. Первый настоящий прорыв совершили ученые Фергесон (Fergason) и Вильямс (Williams) из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот в конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора – цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.
Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы "просеивает" свет, данный эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.
Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-дисплеи для настольных компьютеров.

Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которыми можно манипулировать для отображения информации. LCD монитор имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой [см. рис. 2.1]. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу. Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света).

Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели [см. рис. 2.2].
При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы [см. рис. 2.3].
Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем [см. рис 2.4а].

В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью) [см. рис 2.4б]. Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут иметь любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.
Вообще-то в случае с цветом несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.
Первые LCD дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 15" размеров для использования в ноутбуках, а для настольных компьютеров производятся 20" и более LCD мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

Преимущества и недостатки ЖК-мониторов

Среди преимуществ TFT можно отметить отличную фокусировку, отсутствие геометрических искажений и ошибок совмещения цветов. Кроме того, у них никогда не мерцает экран. Почему? Ответ прост - в этих дисплеях не используется электронный луч, рисующий слева направо каждую строку на экране. Когда в ЭЛТ этот луч переводится из правого нижнего в левый верхний угол, изображение на мгновение гаснет (обратный ход луча). Напротив, пиксели дисплея TFT никогда не гаснут, они просто непрерывно меняют интенсивность своего свечения.
В таблице 1.1 показаны все главные отличия рабочих характеристик для разных типов дисплеев:

Таблица 1.1. Сравнительные характеристики ЭЛТ и ЖК-мониторов.

Условные обозначения: (+ ) достоинство, (~ ) допустимо, (- ) недостаток

ЖК-мониторы ЭЛТ-мониторы
Яркость (+ ) от 170 до 250 Кд/м 2 (~ ) от 80 до 120 Кд/м 2
Контрастность (~ ) от 200:1 до 400:1 (+ ) от 350:1 до 700:1
Угол обзора
(по контрасту)
(~ ) от 110 до 170 градусов (+ ) свыше 150 градусов
Угол обзора
(по цвету)
(- ) от 50 до 125 градусов (~ ) свыше 120 градусов
Разрешение (- ) Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно использовать более высокое или более низкое разрешение, но они не оптимальны. (+ ) Поддерживаются различные разрешения. При всех поддерживаемых разрешениях монитор можно использовать оптимальным образом. Ограничение накладывается только приемлемостью частоты регенерации.
Частота вертикальной развертки (+ ) Оптимальная частота 60 Гц, чего достаточно для отсутствия мерцания (~ ) Только при частотах свыше 75 Гц отсутствует явно заметное мерцание
Ошибки совмещения цветов (+ ) нет (~ ) от 0.0079 до 0.0118 дюйма (0.20 - 0.30 мм)
Фокусировка (+ ) очень хорошая (~ ) от удовлетворительной до очень хорошей>
Геометрические/ линейные искажения (+ ) нет (~ ) возможны
Неработающие пиксели (- ) до 8 (+ ) нет
Входной сигнал (+ ) аналоговый или цифровой (~ ) только аналоговый
Масштабирование
при разных разрешениях
(- ) отсутствует или используются методы интерполяции, не требующие больших накладных расходов (+ ) очень хорошее
Точность отображения цвета (~ ) Поддерживается True Color и имитируется требуемая цветовая температура (+ ) Поддерживается True Color и при этом на рынке имеется масса устройств калибровки цвета, что является несомненным плюсом
Гамма-коррекция
(подстройка цвета под особенности человеческого зрения)
(~ ) удовлетворительная (+ ) фотореалистичная
Однородность (~ ) часто изображение ярче по краям (~ ) часто изображение ярче в центре
Чистота цвета/качество цвета (~ ) хорошее (+ ) высокое
Мерцание (+ ) нет (~ ) незаметно на частоте выше 85 Гц
Время инерции (- ) от 20 до 30 мсек. (+ ) пренебрежительно мало
Формирование изображения (+ ) Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким (~ ) Пиксели формируются группой точек (триады) или полосок. Шаг точки или линии зависит от расстояния между точками или линиями одного цвета. В результате четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества ЭЛТ
Энергопотребление и излучения (+ ) Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT мониторов (от 25 до 40 Вт). (- ) Всегда присутствует электромагнитное излучение, однако их уровень зависит от того, соответствует ли ЭЛТ какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 60 - 150 Вт.
Размеры/вес (+ ) плоский дизайн, малый вес (- ) тяжелая конструкция, занимает много места
Интерфейс монитора (+ ) Цифровой интерфейс, однако, большинство LCD мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров (- ) Аналоговый интерфейс

Из таблицы 1.1 следует, что дальнейшее развитие ЖК-мониторов будет связано с повышением четкости и яркости изображения, увеличением угла обзора и уменьшением толщины экрана. Так, например, уже существуют перспективные разработки LCD-мониторов, выполненных по технологии с использованием поликристаллического кремния. Это позволяет, в частности, создавать очень тонкие устройства, поскольку микросхемы управления размещаются в этом случае непосредственно на стеклянной подложке дисплея. Кроме того, новая технология обеспечивает высокую разрешающую способность на сравнительно небольшом по размеру экране (1024x768 точек на 10,4-дюймовом экране).

STN, DSTN, TFT, S-TFT

STN - это сокращение, означающее "Super Twisted Nematic".Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD дисплея с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.
Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в "запертом" состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки -- их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало [см. рис. 2.5], поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям (это не относится к настольным ЖК мониторам).

Также STN ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя полимерной пленки добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.
Термин пассивная матрица (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча, независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD дисплеев, которая была описана выше, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Такой дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения.
Для решения части вышеописанных проблем применяют специальные технологии, Для улучшения качества динамического изображения было предложено увеличить количество управляющих электродов. То есть вся матрица разбивается на несколько независимых подматриц (Dual Scan DSTN - два независимых поля развертки изображения), каждая из которых содержит меньшее количество пикселей, поэтому поочередное управление ими занимает меньше времени. В результате чего можно сократить время инерции ЖК.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей, которые, впрочем, стоят дороже.
В активной матрице (active matrix) используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности. Активная матрица (active matrix) имеет массу преимуществ по сравнению с пассивной матрицей. Например, лучшая яркость и возможность смотреть на экран даже с отклонением до 45° и более (т.е. при угле обзора 120°-140°) без ущерба качеству изображения, что невозможно в случае с пассивной матрицей, которая позволяет видеть качественное изображение только с фронтальной позиции по отношению к экрану. Заметим, что дорогие модели LCD мониторов с активной матрицей обеспечивают угол обзора в 160° [см рис. 2.6], и есть все основания предполагать, что технология будет совершенствоваться и в дальнейшем. Активная матрица может отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 мс против 300 мс для пассивной матрицы, кроме того, контрастность мониторов с активной матрицей выше, чем у ЭЛТ-мониторов. Следует отметить, что яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофором ЭЛТ-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD мониторов достаточной является частота вертикальной развертки, равная 60 Гц.

Функциональные возможности LCD мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчном обновлении дисплея, а в результате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (двоичные значения 0 или 1) и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. Частично проблема отсрочки затухания изображения в пассивных матрицах решается за счет использования большего числа жидкокристаллических слоев для увеличения пассивности и уменьшения перемещений, теперь же, при использовании активных матриц появилась возможность сократить число жидкокристаллических слоев. Запоминающие транзисторы должны производиться из прозрачных материалов, что позволит световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используются пластиковые пленки, называемые "Thin Film Transistor" (или просто TFT).
Thin Film Transistor (TFT), т.е. тонкопленочный транзистор - это те управляющие элементы, при помощи которых контролируется каждый пиксель на экране. Тонкопленочный транзистор действительно очень тонкий, его толщина 0,1 - 0,01 микрона.
В первых TFT-дисплеях, появившихся в 1972г., использовался селенид кадмия, обладающий высокой подвижностью электронов и поддерживающий высокую плотность тока, но со временем был осуществлен переход на аморфный кремний (a-Si), а в матрицах с высоким разрешением используется поликристаллический кремний (p-Si).
Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико. Заметим, что монитор, который может отображать изображение с разрешением 800х600 пикселей в SVGA режиме и только с тремя цветами имеет 1440000 отдельных транзисторов. Производители устанавливают нормы на предельное количество транзисторов, которые могут быть нерабочими в LCD дисплее. Правда, у каждого производителя свое мнение о том, какое количество транзисторов могут не работать.
Пиксель на основе TFT устроен следующим образом: в стеклянной пластине друг за другом интегрировано три цветных фильтра (красный, зеленый и синий). Каждый пиксель представляет собой комбинацию трех цветных ячеек или субпиксельных элементов [см. рис. 2.7]. Это означает, например, что у дисплея, имеющего разрешение 1280x1024, существует ровно 3840x1024 транзистора и субпиксельных элемента. Размер точки (пикселя) для 15.1" дисплея TFT (1024x768) приблизительно равен 0.0188 дюйма (или 0.30 мм), а для 18.1" дисплея TFT - около 0.011 дюйма (или 0.28 мм).

TFT обладают рядом преимуществ перед ЭЛТ-мониторами, среди которых - пониженное потребление энергии и теплоотдача, плоский экран и отсутствие следа от движущихся объектов. Последние разработки позволяют получить изображение более высокого качества, чем обычные TFT.

Совсем недавно специалистами компании Hitachi была создана новая технология многослойных ЖК-панелей Super TFT, которая значительно увеличила угол уверенного обзора ЖК панели. Технология Super TFT использует простые металлические электроды, установленные на нижней стеклянной пластине и заставляет молекулы вращаться, постоянно находясь в плоскости, параллельной плоскости экрана [см. рис. 2.8]. Так как кристаллы обычной ЖК-панели поворачиваются к поверхности экрана оконечностями, то такие ЖКД более зависимы от угла зрения, чем ЖК-панели Hitachi с технологией Super TFT, В результате изображение на дисплее остается ярким и четким даже при больших углах обзора, достигая качества, сопоставимого с изображением на ЭЛТ-экране.

Японская компания NEC недавно объявила, что по качеству изображения ее LCD дисплеи вскоре достигнут уровня лазерных принтеров, перешагнув порог в 200 ppi, что соответствует 31 точке на мм 2 или шагу точек 0,18 мм. Как сообщили в NEC, применяемые сегодня многими производителями жидкие кристаллы TN (twisted nematic) позволяет строить дисплеи с разрешение до 400 точек на дюйм. Однако главным сдерживающим фактором в повышении разрешения является необходимость создания соответствующих светофильтров. В новой технологии "color filter on TFT" светофильтры, закрывающие тонкопленочные транзисторы, формируются с помощью фотолитографии на нижней стеклянной подложке. В обычных дисплеях светофильтры наносятся на вторую, верхнюю подложку, что требует очень точного совмещения двух пластин.

На прошедшей в 1999 году в США конференции "Society for information Display" было сделано несколько докладов, свидетельствующих об успехах в создании жидкокристаллических дисплеев на пластиковой подложке. Компания Samsung представила прототип монохромного дисплея на полимерном субстрате с диагональю 5,9 дюйма и толщиной 0,5 мм. Толщина самой подложки составляет около 0,12 мм. Дисплей имеет разрешение 480х320 точек и контрастность 4:1. Вес - всего 10 грамм.

Инженеры из Лаборатории кинотехники Университете Штуттгарта использовали не тонкопленочные транзисторы (TFT), а диоды MIM (металл-изолятор-металл). Последнее достижение этой команды - двухдюймовый цветной дисплей с разрешением 96х128 точек и коэффициентом контрастности 10:1.

Группа специалистов IBM разработала технологию производства тонкопленочных транзисторов с применением органических материалов, позволяющую изготавливать гибкие экраны для электронной книги и других устройств. Элементы разработанных IBM транзисторов напыляются на пластиковую подложку при комнатной температуре (традиционные LCD-дисплеи изготавливаются при высокой температуре, что исключает применение органических материалов). Вместо обычного диоксида кремния для изготовления затвора используется цирконат титоната бария (BZT). В качестве полупроводника применяется органическое вещество под названием пентацен (pentacene), представляющее собой соединение фенилэтиламмония с иодидом олова.

Для повышения разрешения LCD-экранов компания Displaytech предложила не создавать изображение на поверхности большого LCD-экрана, а вывести картинку на маленький дисплей высокого разрешения, а затем с помощью оптической проекционной системы увеличить ее до нужных размеров. При этом Displaytech использовала оригинальную технологию Ferroelectric LCD (FLCD). Она основана на так называемых кирально-смектических жидких кристаллах, предложенных для использования еще в 1980 г. Слой материала, обладающего ферроэлектрическими свойствами и способного отражать поляризованный свет с вращением плоскости поляризации, наносится на подающую управляющие сигналы CMOS-подложку. При прохождении отраженного светового потока через второй поляризатор возникает картинка из темных и светлых пикселов. Цветное изображение получается за счет быстрого чередования освещения матрицы красным, зеленым и синим светом.. На базе FLCD-матриц можно производить экраны большого размера с высокой контрастностью и качеством цветопередачи, с широкими углами обзора и малым временем отклика. В 1999 году альянс корпораций Hewlett-Packard и DisplayTech объявил о создании полноцветного микродисплея на базе технологии FLCD. Разрешение матрицы составляет 320х240 точек. Отличительными особенностями устройства являются малое энергопотребление и возможность воспроизведения полноцветного “живого” видео. Новый дисплей предназначен для использования в цифровых камерах, камкодерах, портативных коммуникаторах и мониторах для надеваемых компьютеров.

Развитием низкотемпературной технологии с использованием поликристаллического кремния LTPS занимается Toshiba. По словам представителей этой корпорации, они позиционируют новые устройства пока только как предназначенные для рынка мобильных устройств, не включая сюда ноутбуки, где господствует технология a-Si TFT. Уже выпускаются VGA-дисплеи размером 4 дюйма, а на подходе 5,8-дюймовые матрицы. Специалисты полагают, что 2 млн. пикселов на экране - это далеко не предел. Одной из отличительных черт данной технологии является высокая разрешающая способность.

По оценкам экспертов корпорации DisplaySearch, занимающейся исследованиями рынка плоских дисплеев, в настоящее время при изготовлении практически любых жидкокристаллических матриц происходит замена технологий: TN LCD (Twisted Nematic Liquid Crystal Display) на STN (Super TN LCD) и особенно на a-Si TFT LCD (amorphous-Silicon Thin Film Transistor LCD). В ближайшие 5-7 лет во многих областях применения обычные LCD-экраны будут заменены или дополнены следующими устройствами:

  • микродисплеи;
  • светоизлучающие дисплеи на базе органических материалов LEP;
  • дисплеи на базе автоэлектронной эмиссии FED (Field Emisson Display);
  • дисплеи с использованием низкотемпературного поликристаллического кремния LTPS (Low Temperature PolySilicon);
  • плазменные дисплеи PDP (Plasma Display Panel).

Взято с http://monitors.narod.ru



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: