Закон ома напряжение прямо пропорционально. Все виды законов ома. Закон Ома записывается формулой

Обычно электролитами называют вещества, проводящие в водном растворе электрический ток (многие соли, кислоты, основания), в противоположность неэлектролитам, не проводящим в растворе электрического тока (большинство органических соединений: сахар, спирты, глюкоза и др.).

Для объяснения свойств водных растворов электролитов Аррениус (1887 г.) предложил теорию, сущность которой сводится к следующим основным положениям:

1. Молекулы всех веществ, проводящих в водном растворе электрический ток, при растворении в воде в той или иной степени диссоциируют на ионы. Например:

2. Образующиеся при электролитической диссоциации ионы в отличие от нейтральных атомов и молекул имеют электрический заряд и поэтому обладают совершенно иными свойствами. Так, например, атомарный водород является энергичным восстановителем, в то время как ион водорода обладает окислительными свойствами. Поваренная соль, содержащая ион хлора, употребляется в пищу, тогда как свободный хлор (0,01% и выше) отравляет организм человека.

3. При пропускании электрического тока через раствор электролита положительно заряженные ионы направляются к отрицательному электроду (катоду), отрицательные ионы - к положительному электроду (аноду). Ионы, передвигающиеся к катоду, получили название катионов; ионы, передвигающиеся к аноду - анионов.

Положительно заряженные ионы получают электроны от катода, а отрицательно заряженные ионы отдают свои электроны аноду.

Теория Аррениуса не учитывала взаимодействие растворенного вещества с растворителем. На основе синтеза представлений Аррениуса и гидратной теории Д. И. Менделеева И. А. Каблуков (1891 г.) создал более точную теорию, согласно которой электролитическая диссоциация веществ на ионы сопровождается сольватацией ионов, т. е. взаимодействием последних с молекулами среды. Если средой является вода, то этот процесс называют гидратацией. Так, например, ион водорода в водном растворе соединяется с молекулой воды, образуя сложный ион гидроксония:

Катион бериллия образует тетрагидрат , ион - гексагидрат .

Количественной характеристикой равновесного состояния водного раствора электролита является степень диссоциации (а), т. е. отношение количества молекул, распавшихся на ионы, к общему количеству растворенных молекул. Так, для электролита, у которого половина всех молекул в растворе распалась на ионы, а=0,5. Эту величину часто умножают на 100 и таким образом выражают диссоциированную часть молекул в процентах от их общего числа. Так, например, если из каждых 100 молекул, растворенных в воде, 80 диссоциировано на ионы, то степень диссоциации равна , или же .

Таким образом, показывает, какая часть растворенных молекул распалась на ионы. Степень электролитической диссоциации зависит от природы растворенного вещества, растворителя, концентрации и температуры раствора.

При разбавлении раствора степень электролитической диссоциации увеличивается.

По величине степени диссоциации электролиты делятся на сильные, средние и слабые.

Таблица 1. Степень электролитической диссоциации (а) в 0,1 н. растворах

При смешении растворов сильных электролитов их ионы вступают в реакцию. В результате различных на первый взгляд реакций нередко образуются одни и те же вещества. Возьмем, например, реакции:

Во всех этих реакциях происходит образование белого, практически нерастворимого в воде осадка хлористого серебра .

С точки зрения теории электролитической диссоциации в водных растворах протекают реакции не между самими электролитами, а между образованными ими ионами. Так, в приведенных выше реакциях растворы солей серебра, наряду с другими ионами, содержали ионы серебра , а растворы хлоридов - ионы хлора . Ионы серебра и хлора, взаимодействуя между собой, во всех случаях дают осадок хлористого серебра. На основе этой реакции можно при помощи ионов серебра открыть присутствие в растворе ионов хлора, и, наоборот, при помощи ионов хлора открыть ионы серебра. Если же хлор входит в состав других ионов или недиссоциированных молекул, то с помощью ионов серебра открыть его присутствие невозможно. Например, в реакции между нитратом серебра и бертолетовой солью осадка хлорида серебра не образуется. Объясняется это тем, что бертолетова соль в растворе не образует ионов хлора, а диссоциирует следующим образом:

При реакциях между ионами в растворах электролитов возможны следующие случаи: 1) образующиеся вещества - сильные электролиты, хорошо растворимые в воде и полностью диссоциирующие на ионы; 2) одно из образующихся веществ - газ, осадок, слабый электролит (растворимый в воде) или комплексный ион.

Рассмотрим конкретные примеры.

1. Реакция между растворами нитрата калия и хлорида натрия (сильные электролиты) в молекулярной форме выразится уравнением:

Так как все участвующие в этой реакции соли являются сильными электролитами, то в ионном виде уравнение данной реакции можно записать так:

Как показывает это уравнение, в растворе до и после смешения солей находятся только ионы:

При сливании растворов и не образуется ни нерастворимых соединений, ни слабодиссоциирующих веществ, ни газов. Следовательно, в данном случае не происходит и реакции.

2. Образующиеся в результате реакции газ, осадок, слабый электролит или комплексный ион уходят из сферы реакции. Например, при взаимодействии кристаллического и концентрированной практически можно (при нагревании) сдвинуть равновесие вправо, так как хлороводород - газообразное вещество, которое улетучивается из сферы реакции:

Из сферы реакции

сульфат бария удаляется в виде осадка. Здесь равновесие практически сдвинуто вправо ввиду малой растворимости . В ионномолекулярном виде уравнение этой реакции записывается следующим образом:

Концентрации ионов водорода и хлора в процессе реакции остаются неизменными, поэтому из уравнения реакции их можно исключить. Тогда уравнение примет следующий вид:

Это последнее и представляет собой ионное уравнение образования осадка.

В качестве примера реакции с образованием слабо диссоциирующего вещества можно привести нейтрализацию сильной кислоты сильным основанием:

Реакцией с образованием комплексного иона, например, является получение гексациано- феррата калия (желтой кровяной соли)

В обменных реакциях приходится встречаться и с такими процессами, при которых труднорастворимые находятся как среди исходных, так и конечных продуктов реакции:

В подобных реакциях равновесие смещается в сторону образования того вещества, которое менее растворимо. В первой реакции равновесие смещено справа налево, так как растворимость намного меньше, чем (см. приложение 4 в конце книги).

Во второй реакции, наоборот, равновесие смещено слева направо, ибо более растворим, чем .

При написании уравнений реакций, протекающих между ионами в растворах электролитов, руководствуются правилом:

Реакции между ионами в растворах электролитов идут практически до конца в сторону образования газов, осадков, слабых электролитов или комплексных ионов - вообще в сторону образования продуктов, уходящих из сферы реакции.

Иными словами, равновесие реакции смещается в сторону образования веществ с меньшей концентрацией ионов в растворе.

Реакции, которые протекают одновременно в противоположных направлениях, называются обратимыми.

Такие реакции обозначаются противоположно направленными стрелками.

Реакцию, протекающую слева направо, называют прямой, а противоположную - обратной.

Такое состояние системы, при котором скорости прямой и обратной реакций равны, называется химическим равновесием.

Химическое равновесие является динамическим равновесием и обусловливается не тем, что процесс прекращается, а равенством скоростей двух противоположных процессов; число образующихся в единицу времени молекул при этом равно числу распадающихся. По достижении химического равновесия состав системы не изменяется.

Обратимая реакция, протекающая в растворе электролита, может быть выражена общим уравнением:

где А и В - исходные вещества, С и D - образующиеся вещества.

Обозначим молярные концентрации вещества А, В, С и D через ; скорость прямой реакции через , скорость обратной реакции - через . Тогда скорость прямой реакции будет пропорциональна произведению концентраций реагирующих веществ: , где К - коэффициент пропорциональности, или так называемая константа скорости реакции, зависящая от природы взаимодействующих веществ и от условий реакции (температуры, давления и катализатора). Скорость обратной реакции взаимодействия с образованием выразится уравнением: , где - также коэффициент пропорциональности.

Скорость реакции пропорциональна произведению концентрации реагирующих веществ. Поскольку концентрации вещества в начале реакции максимальны, максимальна и скорость прямой реакции . По мере взаимодействия между А и В (и образования веществ С и D) концентрации вещества А и В постепенно уменьшаются, а вместе с тем уменьшается и скорость прямой реакции.

Напротив, скорость обратной реакции вначале равна нулю и увеличивается с возрастанием концентраций веществ С и D, получающихся в результате реакции между А и В. Таким образом, в обратимом химическом процессе скорость прямой реакции постепенно уменьшается, а обратной - возрастает.

Уменьшение скорости прямой реакции и увеличение обратной приводят к установлению в системе динамического равновесия. При равновесии скорости обеих реакций равны, т. е. , а следовательно,

Так как и - постоянные величины, то их отношение является также величиной постоянной. Обозначив ее буквой К , получим

Это уравнение в математической форме выражает закон действия масс, который в наиболее общей форме можно формулировать следующим образом.

При обратимых реакциях равновесие наступает тогда, когда отношение произведения равновесных концентраций образующихся веществ к произведению концентраций веществ, вступающих в реакцию, становится равным некоторой постоянной для данной химической реакции величине КУ называемой константой химического равновесия.

Величина К меняется с температурой и давлением, а от концентрации реагирующих веществ не зависит.

Сущность константы химического равновесия состоит в том, что если изменить концентрацию одного из компонентов, участвующих в равновесии, то, в свою очередь, концентрации всех других компонентов изменятся таким образом, что К останется постоянной, т. е. сохранит свое прежнее значение.

Для обратимой реакции, в которой вещества участвуют в количестве не одной, а нескольких грамм-молекул, например , где число грамм-молекул веществ А, В, С и D, участвующих в реакции, уравнение равновесия принимает вид:

Закон действия масс имеет важное значение в химии. Однако он строго соблюдается только для неэлектролитов и слабых электролитов в разбавленных растворах. Сильные электролиты и слабые электролиты в концентрированных растворах закону действия масс не подчиняются.

Величина константы электролитической диссоциации сильных электролитов не остается постоянной для разных концентраций. Так, например, для 3,2, 0,1 и 0,01 н. растворов хлористого калия (при ) константы электролитической диссоциации соответственно равны 4,31; 3,52; 2,34; 0,536; 0,152.

Напротив, константы электролитической диссоциации слабых электролитов, в пределах погрешностей опыта, постоянны, т. е. не зависят от концентрации раствора. Например, константа диссоциации уксусной кислоты для 1, 0,1, 0,01 н. растворов равна . Следовательно, относительные количества компонентов в равновесной системе сильного электролита меняются в зависимости от концентрации раствора не так, как это должно было бы быть по закону действия масс.

В настоящее время считают, что все сильные электролиты, независимо от концентрации их растворов, диссоциированы практически нацело. Кажущимся противоречием этому положению является то, что степень электропроводности растворов сильных электролитов на практике оказывается меньше той, которая должна быть в случае полной электролитической диссоциации данного электролита. Это, однако, объясняется тем, что в растворах сильных электролитов, несмотря на их почти полную диссоциацию, с увеличением концентрации раствора расстояние между ионами уменьшается, а потому электростатическое притяжение между разноименно заряженными ионами возрастает. Вследствие этого с увеличением концентрации подвижность ионов, а следовательно, и электропроводность сильных электролитов уменьшается. В силу электростатического притяжения между заряженными ионами вокруг каждого из них группируются ионы с противоположным знаком, образуя так называемую ионную атмосферу, или ионное облако. Так, например, в растворе хлористого натрия вокруг ионов натрия создается ионная атмосфера из ионов хлора, а вокруг хлора группируются ионы натрия. Чем больше концентрация вещества в растворе, тем плотнее ионная атмосфера и тем медленнее движение ионов. Наоборот, в разбавленных растворах расстояния между противоположно заряженными ионами настолько велики и притяжение между ними так мало, что практически сводятся к нулю; поэтому электропроводность сильных электролитов при разбавлении растворов повышается.

Таким образом, чем электролит меньше диссоциирован и раствор больше разбавлен, тем меньше межионное электрическое влияние, а следовательно, и меньше отклонений от закона действия масс; наоборот, чем более раствор концентрирован, тем сильнее межионное влияние и тем больше отклонений от закона действия масс.

Действующая, активная концентрация, или, как ее обыкновенно именуют, активность, как правило, не равна- обычной концентрации, представляющей собой простое отношение количества взятого вещества к объему, в котором оно находится. Хотя это расхождение в большинстве случаев и не очень значительно, однако в строгих и точных количественных расчетах принято пользоваться не концентрациями, а активностями. Их подробное рассмотрение см. в курсе физической химии. Здесь мы ограничимся лишь общим фундаментальным соотношением, относящимся к данной области химии, согласно которому активность (а) равна молярной концентрации (с), умноженной на коэффициент активности :

Коэффициент активности показывает, насколько поведение ионов в растворе при данной концентрации отклоняется от их поведения при бесконечном разбавлении.

Коэффициент активности меньше единицы, но при бесконечном разбавлении раствора, когда силы притяжения между ионами приближаются к нулю, концентрация и активность равиы друг другу: а=с. В этом случае коэффициент активности равен единице.

Коэффициент активности может быть определен различными методами (из измерений электродвижущих сил, температур кипения и замерзания растворов, понижения упругости пара и др.). Его величина зависит от концентрации раствора, его общего состава, температуры, давления и т. д.

Величину коэффициентов активности отдельных ионов нельзя определить, так как получаются результаты для вещества в целом. Однако для очень разбавленных растворов значения коэффициентов активности отдельных ионов можно вычислить теоретически по приближенному уравнению (Дебая и Гюккеля):

где Z - заряд иона, - ионная сила раствора.

Из отдельных значений коэффициентов активности получить средний коэффициент активности сильного электролита типа можно при помощи уравнения

где М и А означают соответственно катион и анион, х и у - число катионов и анионов, образующихся при диссоциации одной молекулы.

Понятие ионной силы введено для характеристики зависимости активности иона от концентрации всех находящихся в растворе электролитов.

Формула для вычисления ионной силы имеет вид:

где - ионная сила, Z - заряд иона и с - концентрация ионов, .

В качестве примера рассмотрим, чему равна ионная сила 0,03 М раствора

С увеличением концентрации раствора при полной диссоциации молекул число ионов растет, а следовательно, увеличивается ионная сила раствора и. уменьшается активность ионов. . Наоборот, при увеличении концентрации (числитель) для сохранения постоянства К должен увеличиться знаменатель, и в результате реакция пойдет справа налево. Вследствие уменьшения концентрации интенсивно красный цвет раствора будет бледнеть или совершенно исчезнет. Таким образом, для смещения равновесия любой обратимой реакции слева направо надо увеличить концентрацию одного или нескольких веществ, стоящих слева от знака обратимости, или уменьшить концентрацию одного из веществ правой части уравнения.

Общую формулировку влияния температуры, давления и концентрации на равновесную систему дает принцип Ле Шателье:

Если на равновесную систему оказывать какое-либо воздействие извне, то внутри системы возникают процессы, которые противодействуют внешнему воздействию.

Из уравнения

видно, что соединение водорода с азотом сопровождается выделением, а распад аммиака на водород и азот - поглощением тепла. В этом случае сообщение тепла извне сдвигает равновесие влево, т. е. благоприятствует эндотермической реакции. Наоборот, охлаждение системы способствует более полному образованию аммиака, т. е. экзотермической реакции.

Для всякой равновесной системы при нагревании равновесие смещается в сторону эндотермической реакции, при охлаждении - в сторону экзотермической.

В рассматриваемой системе взаимодействуют (левая часть уравнения) 4 объема газа, образуется же только (правая часть уравнения) 2 объема газа. При увеличении давления равновесие сместится в сторону образования аммиака, при уменьшении давления - в сторону его распада.

При увеличении концентрации одного из участвующих в равновесной системе веществ равновесие смещается в сторону реакции, ведущей к уменьшению концентрации того же вещества. Напротив, уменьшение концентрации одного из участвующих в равновесии веществ вызывает смещение равновесия в сторону образования этого вещества. Так, например, в реакции

при увеличении концентрации равновесие смещается вправо - в сторону образования СО и , вследствие чего общая концентрация понизится; при уменьшении же концентрации равновесие сдвигается влево, в сторону образования .

Если химическое равновесие обратимой реакции сильно смещается в одну сторону, то она при данных условиях представляется нам необратимой, т. е. протекающей в одном направлении.

Вообще же при общем рассмотрении этого вопроса следует иметь в виду, что подавляющее большинство химических реакций являются обратимыми, но их равновесие часто настолько сильно сдвинуто в одну сторону, что практически мы их обратимость не замечаем до тех пор, пока не изменим условия. Однако имеются и необратимые реакции, идущие до конца, когда из образовавшихся продуктов невозможно при возвращении к прежним условиям получить исходное вещество, невозможно заставить реакцию идти в обратном направлении. Примером необратимой реакции является реакция разложения при нагревании бертолетовой соли:

Из и вновь получить нельзя.

Огромное число реакций, протекающих между электролитами в водных растворах, относится к типу реакций обмена. Рассмотрим механизм этих реакций несколько подробнее, причем будем считать, что сильные электролиты полностью диссоциированы.

В общем виде реакция обмена может быть выражена уравнением

АВ + CD = AD + СВ

Предположим, что АВ и CD - сильные электролиты и, следовательно, растворы их содержат исключительно свободные ионы А , В’, С и D’. Тогда результат реакции будет всецело зависеть от растворимости и способности к диссоциации образующихся веществ AD и СВ. Здесь возможны два основных случая: 1) образующиеся тоже сильные электролиты, хорошо растворимые в воде, и 2) одно или оба образующихся нерастворимы или являются слабыми электролитами.

Посмотрим на конкретных примерах, что происходит в том и другом случае.

Смешаем растворы двух сильных электролитов хлористого натрия NaCl и азотнокислого калия KNO 3 . Взаимодействие между ними в молекулярной форме выразится уравнением,

NaCl + KNO 3 = NaNO 3 + КСl

Так как соли NaNO 3 и КСl хорошо растворимы в воде, раньше считали, что эта реакция не доходит до конца и приводит к состоянию равновесия между взятыми и образующимися солями. Теперь мы знаем, что все четыре соли, как сильные электролиты, полностью диссоциированы на ионы. Поэтому, переходя к ионному уравнению реакции, можно написать:

Na + Сl’ + K + NO3′ = Na + NO3′ + К + Сl’

Отсюда видно, что как до смешивания растворов, так и после него в растворе будут находиться только свободные ионы:

Na, K , Cl’ и NO3′

Таким образом, с точки зрения ионной теории в данном случае,?вообще не происходит никакой реак-ц и и. Этот вывод подтверждается и тем, что при смешивании растворов хлористого натрия и азотнокислого калия не наблюдается ни выделения, ни поглощения тепла, что указывает на отсутствие химического превращения.

Иначе обстоит дело, если одно из образующихся веществ является слабым электролитом. Рассмотрим, например, реакцию, происходящую при смешивании раствора уксуснокислого натрия NaCH 3 COO с раствором соляной кислоты:

NaCH 3 COO + НСl = СН 3 СООН + NaCl

До смешивания растворы содержали ионы Na , СН 3 СОО’, Н и Сl’, После смешивания ионы СН 3 СОО’, встречаясь в растворе с ионами Н будут соединяться с ними, образуя недиссоцииро-ванные молекулы слабого электролита - уксусной кислоты СН3СООН. Это будет происходить до тех пор, пока в растворе не останется лишь такое число ионов Н и СН 3 СОО’, которое соответствует степени диссоциации уксусной кислоты. В результате раствор будет содержать ионы Na , СГ, молекулы СН 3 СООН и незначительное число ионов Н и СН 3 СОO’. Пренебрегая последним, можно изобразить происходящую реакцию следующим ионным уравнением:

Н + Сl’ + Na + СН 3 СОО’ = Na + Сl’ + СН 3 СООН

или, исключив ионы, не участвующие в реакции:

H + CH 3 COO’ = CH 3 COOH

Следовательно, вся реакция сводится к образованию недиссоциированных молекул уксусной кислоты из ионов Н и СН 3 СОО’. Такую реакцию называют вытеснением слабой кислоты из ее соли сильной кислотой, потому что при этой реакции сильная кислота (соляная) заменяется в растворе слабой кислотой (уксусной).

Другим примером реакции, при которой происходит образование слабо диссоциирующего , является реакция нейтрализации сильных кислот сильными основаниями, например:

НСl + NaOH = NaCl + Н 2 O

Так как одно из образующихся при этой реакции веществ - - практически почти не диссоциирует на ионы, переходя к ионному уравнению, получаем:

H + Cl’ + Na +OH’ = Na +Cl’ + H 2 O

Н + ОН’ = Н2О

Последнее уравнение выражает процесс нейтрализации любой сильной кислоты любым сильным основанием на языке ионной теории. Следовательно, нейтрализация сводится к образованию молекул воды из ионов водорода (или гидроксония) и ионов гидроксила.

Если всякий процесс нейтрализации сильной кислоты сильным основанием состоит только в соединении водородных и гидроксильных ионов, и количество выделяющегося при нем тепла всегда должно быть одно и то же, независимо от природы кислоты или основания. Опыт действительно подтверждает этот вывод: при нейтрализации любой сильной кислоты любым сильным осно-

ванием на каждую граммолекулу образующейся воды выделяется около 13,8 ккал тепла:

HCl + NaOH = NaCl + Н 2 O + 13,75 ккал

HNO 3 + КОН = KNO 3 + Н 2 O + 13,77 ккал

НСl + КОН = КСl + Н 2 O + 13,75 ккал

Реакции, аналогичные реакциям, протекающим с образованием слабого электролита, происходят и в тех случаях, когда одно из образующихся веществ нерастворимо и выделяется из раствора в виде осадка или в виде газа. Примером могут служить уже разобранные раньше реакции взаимодействия солей серебра с солями соляной кислоты, которые сводятся к образованию нерастворимого хлористого серебра из ионов серебра и хлора:

Ag + Сl’ = AgCl

Правда, абсолютно нерастворимых веществ нет, поэтому при образовании хлористого серебра некоторое число ионов серебра и хлора, соответствующее произведению растворимости AgCl, остается в растворе. Поскольку это число ничтожно, мы при выражении реакции ионным уравнением им пренебрегаем. Так же точно мы поступаем и при составлении ионных уравнений других реакций, сопровождающихся образованием трудно растворимых веществ.

Разберем теперь, как будет протекать реакция, если одно из вступающих в реакцию веществ слабый электролит. Конечно, если вещества, которые могли бы образоваться в результате реакции, сильные электролиты, то никакой реакции не произойдет, как например, при смешивании растворов СН 3 СООН и KCl. Но если одно или оба образующиеся вещества еще более слабые электролиты, чем вступающий в реакцию электролит, то последний может почти целиком подвергнуться превращению. В качестве примера возьмем реакцию нейтрализации уксусной кислоты едким натром:

СН 3 СООН + NaOH = NaCH 3 COO + Н 2 O

Смешав растворы уксусной кислоты и едкого натра, мы получим раствор, который в первый момент будет содержать ионы Na и ОН’ и небольшое число ионов Н и СН 3 СОО’, находящихся в равновесии с недиссоциированными молекулами уксусной кислоты:

СН 3 СООН ⇄ Н + СН 3 СОО’

При встрече ионы Н и ОН’ будут соединяться, образуя молекулы практически недиссоциированной воды. По мере связыва-

ния ионов водорода равновесие между молекулами уксусной кислоты и ее ионами будет нарушаться и начнут диссоциировать новые молекулы. Этот процесс будет проходить до тех пор, пока почти все молекулы уксусной кислоты не распадутся на ионы.

Таким образом, в растворе будут одновременно протекать два процесса - диссоциация молекул уксусной кислоты и образование молекул воды из ионов водорода и гидроксила. Все происходящее можно представить в виде следующей схемы:

В данном, случае было бы неправильным изображать реакцию нейтрализации таким же ионным уравнением, как и реакцию нейтрализации сильных кислот сильными основаниями, т. е.

Н + OH’ = H 2 O

так как свободных ионов водорода во взятом нами растворе почти не было, - они образовывались постепенно, по мере течения реакции, из молекул уксусной кислоты. Следовательно, молекулы уксусной кислоты косвенно тоже участвовали в реакции, поставляя все новые и новые ионы водорода по мере связывания последних гидроксильными ионами.

Чтобы отразить это обстоятельство в ионном уравнении, уксусную кислоту изображают в виде молекул, т. е. в том виде, в каком она главным образом и находилась во взятом нами растворе:

СН3СООН + Na + ОН’ = Н 2 O + Na + СН 3 СОО’

Произведя приведение подобных членов, получаем:

СН 3 СООН + OH’ = Н 2 O + СН 3 СОО’

Это уравнение не только отмечает косвенное участие в реакции молекул уксусной кислоты, но и показывает, что в результате резекции, кроме молекул воды, образовалось также большое число ионов СН 3 СОО’, которых до реакции в растворе почти не было.

Так как реакция нейтрализации уксусной кислоты (в отличие от реакции нейтрализации сильных кислот сильными основаниями) складывается из двух процессов - диссоциации молекул уксусной кислоты и образования молекул воды, то и теплота нейтрализации уже не равна 13,8 ккал, а составляет 13,3 ккал. Очевидно, что при диссоциации 1 моля уксусной кислоты поглощается 0,5 ккал тепла. В других случаях поглощение тепла при диссоциации слабого электролита может быть еще значительнее.

Например, при нейтрализации 1 моля хлорноватистой кислоты НСlO едким натром выделяется всего 9,84ккал.

Из разобранных примеров ионных реакций можно сделать следующий общий вывод:

Обязательным условием течения реакций обмена между электролитами является уход из раствора тех или иных ионов вследствие образования слабо диссоциирующих веществ, или веществ, практически нерастворимых, выделяющихся из раствора в виде осадка или газа. Иначе говоря, реакции в растворах электролитов всегда идут в сторону образования наименее диссоциированных или наименее растворимых веществ. Если ни одного из таких веществ при реакции образоваться не может, то не происходит и самой реакции.

Особого рассмотрения требуют еще реакции, при которых не только не образуются нерастворимые вещества, но, наоборот, нерастворимое в воде вещество растворяется при действии того или иного реактива.

В качестве примера возьмем хотя бы растворение гидрата окиси меди в кислотах:

Сu (ОН) 2 + 2НСl = СuСl 2 + 2Н 2 O

С первого взгляда может показаться, что эта реакция противоречит сделанному выше обобщению. Однако никакого противоречия здесь нет, так как одно из условий, определяющих направление реакции, именно образование мало диссоциированного соединения (воды), налицо; оно-то и является причиной растворения гидрата окиси меди.

Чтобы разобраться в происходящем процессе с точки зрения ионной теории, нужно прежде всего учесть, что нерастворимость вещества никогда не бывает абсолютной. Поэтому всякая жидкость над осадком «нерастворимого» вещества представляет собой насыщенный раствор этого вещества. В данном случае трудно сказать, содержит ли этот раствор только ионы Сu и ОН’ или также и недиссоциированные молекулы Сu (ОН) 2 , так как условия ионизации гидратов окислов тяжелых металлов еще мало изучены. Более вероятно, что такие гидраты образуют молекулярные решетки и, следовательно, при их растворении в раствор переходят молекулы, которые уже в растворе в большей или меньшей степени диссоциируют на ионы, В таком случае в насыщенном растворе гидрата окиси меди Сu(ОН) 2 будут иметь место два связанных между собой равновесия: одно равновесие между осадком и перешедшими в раствор молекулами Сu(ОН)2, другое - между теми же молекулами и образовавшимися из них ионами:

Когда мы действуем на гидрат окиси меди кислотой, гидроксильные ионы связываются с водородными ионами кислоты в недиссоциированные молекулы воды. Убыль их тотчас же нарушает равновесие (2), вызывая диссоциацию нового числа молекул Сu (ОН) 2 , что, в свою очередь, нарушает равновесие (1), заставляя часть осадка перейти в раствор. Образовавшиеся вследствие диссоциации ионы гидроксила снова связываются с ионами водорода и так далее, пока при достаточном количестве кислоты весь осадок не перейдет в раствор. Все происходящее можно представить в виде следующей схемы:

Уравнения реакций обмена обычно записывают в молекулярной и ионно-молекулярной формах. Молекулярная форма уравнения показывает, какие вещества можно выделить из раствора и рассчитать их количества. Ионно-молекулярная форма уравнения позволяет определить возможность превращения и его причины, которые сводятся к образованию малорастворимого либо малодиссоциированного соединения. Такие уравнения позволяют также предсказать принципиальную обратимость или необратимость взаимодействия.

В ионных уравнениях формулы веществ записывают в виде ионов или в виде молекул.

В виде ионов записывают формулы сильных электролитов.

В виде молекул записывают формулы воды, слабых электролитов, малорастворимых солей (↓), формулы газообразных веществ, формулы оксидов металлов и неметаллов.

1) AgNO 3 + NaCl → AgCl↓ + NaNO 3 ;

Ag + + NO 3 - + Na + + Cl - → AgCl↓ + Na + + NO 3 - ;

Ag + + Cl - → AgCl↓.

2) Na 2 CO 3 + H 2 SO 4 → Na 2 SO 4 + H 2 O + CO 2 ;

2Na + + CO 3 2- + 2H + + SO 4 2- → 2Na + + SO 4 2- + H 2 O + CO 2 ;

CO 3 2- + 2H + → H 2 O + CO 2 .

3) NaOH + HCl → NaCl + H 2 O;

Na + + OH - + H + + Cl - → 2Na + + Cl - + H 2 O;

H + + OH - → H 2 O.

4) HgI 2 + 2KI → K 2 ;

HgI 2 + 2K + + 2I - → 2K + + 2- ;

HgI 2 + 2I - → 2- .

2.4 Смещение равновесий в растворах слабых электролитов

В растворах слабых электролитов устанавливается динамическое равновесие между недиссоциированными молекулами и образовавшимися в результате диссоциации ионами.

Это динамическое равновесие можно сместить одним из следующих способов:

1) разбавление раствора способствует диссоциации, равновесие смещается в сторону образования дополнительного количества ионов;

2) увеличение концентрации одноименных ионов будет подавлять диссоциацию, равновесие сместится в сторону образования недиссо­циированных молекул.

Например: при внесении в раствор уксусной кислоты ацетата натрия диссоциация кислоты уменьшается:

CH 3 COOH ↔ CH 3 COO - + Н +

NaCH 3 COO → Na + + CH 3 COO - ,

Величина К дисс при данной температуре постоянная, поэтому увеличение концентрации ацетат-ионов CH 3 COO -  должно привести к умень­шению концентрации водородных ионов H +  и увеличению концентрации недиссоциированных молекул кислоты CH 3 COOH , т.е. часть ионов Н + и СН 3 СОО - должна соединяться в молекулы CH 3 COOH;

3) связывание одного из образующихся ионов будет усиливать диссоциацию. Например,

NH 4 OH ↔ NH 4 + + OH - ;

HCl → H + + Cl - ;

H + + OH - ↔ H 2 O.

Связывание ОН - - ионов в молекулы воды при постоянной

должно привести к увеличению NH + 4  и уменьшению NH 4 OH , т.е. к усилению диссоциации гидроксида аммония.

2.5 Произведение растворимости

В системе, состоящей из осадка малорастворимого электролита и насыщенного раствора над ним, устанавливается динамическое равновесие:

Me n X m(тв) ↔ n Me m+ + m X n-

Константа равновесия для данного случая имеет вид

.

Знаменатель этой дроби есть величина постоянная, поэтому произ­ведение K равн Me n Х m  тоже является постоянной при данной температуре. Отсюда, следует, что произведение n · m представ­ляет собой постоянную величину, называемую произведением раствори­мости и обозначаемую ПР. Например:

ПР(AgCl) = Ag + ·Cl - ,

ПР(Bi 2 S 3) = Bi 3+  2 ·S 2-  3 .

Таким образом, в насыщенном растворе труднорастворимого электролита произведение концентраций его ионов есть величина постоянная при данной темпе­ратуре.

Если произведение концентраций ионов такого электролита в растворе превышает величину его ПР, то образуется осадок.

Если произведение концентраций ионов труднорастворимого электролита в растворе меньше его ПР, то осадок не образуется. В том случае, когда оса­док был получен ранее, а концентрации составляющих его ионов в растворе каким-либо образом уменьшили и значение ПР не достигается-происходит растворение осадка.

Зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока . То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток , в свою очередь – это упорядоченное движение частиц под действием электрического поля .

Зависимость силы тока и напряжения

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением . Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току . Сопротивление связано с силой тока обратно пропорционально. Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз. И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

где I – сила тока,
U – напряжение,
R – сопротивление.

Применение закона Ома

Закон Ома – один из основополагающих законов физики . Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

U=IR и R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

В природе существует два основных вида материалов, проводящие ток и не проводящие (диэлектрики). Отличаются эти материалы наличием условий для перемещения в них электрического тока (электронов).

Из токопроводящих материалов (медь, алюминий, графит, и многие другие), делают электрические проводники, в них электроны не связаны и могут свободно перемещаться.

В диэлектриках электроны привязаны к атомам намертво, поэтому ток в них течь не может. Из них делают изоляцию для проводов, детали электроприборов.

Для того чтобы электроны начали перемещаться в проводнике (по участку цепи пошел ток), им нужно создать условия. Для этого в начале участка цепи должен быть избыток электронов, а в конце – недостаток. Для создания таких условий используют источники напряжения – аккумуляторы, батарейки, электростанции.

В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.

Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.

Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.

Где I – сила тока, измеряется в амперах и обозначается буквой А ; U В ; R – сопротивление, измеряется в омах и обозначается .

Если известны напряжение питания U и сопротивление электроприбора R , то с помощью выше приведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I .

С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.

Применение закона Ома на практике

На практике часто приходится определять не силу тока I , а величину сопротивления R . Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R , зная протекающий ток I и величину напряжения U .

Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.

Формула Закона Джоуля-Ленца

Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца .

Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

где P – мощность, измеряется в ваттах и обозначается Вт ; U – напряжение, измеряется в вольтах и обозначается буквой В ; I – сила ток, измеряется в амперах и обозначается буквой А .

Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала .

Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

Преобразованные формулы Закона Ома и Джоуля-Ленца

Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой несвязанные между собой четыре сектора и очень удобна для практического применения

По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: