Подключение эл двигателя звезда треугольник. Соединение звездой и треугольником генераторных обмоток. Соединение «треугольником» и его преимущества

Типичные случаи соединений в звезду и треугольник генераторов, трансформаторов и электроприемников рассмотрены в статьях "Схема соединения "Звезда " и "Схема соединения "Треугольник ". Остановимся теперь на важнейшем вопросе о мощности при соединениях в звезду и треугольник, так как для работы каждого механизма, приводимого в действие электродвигателем или получающего питание от генератора или трансформатора, в конечном итоге важна именно мощность .

В сетях переменного тока различают:
полную (кажущуюся) мощность S = E × I или S = U × I ;
активную мощность P = E × I × cos φ или P = U × I × cos φ ;
реактивную мощность Q = E × I × sin φ или Q = U × I × sin φ ,
где Е электродвижущая сила (э. д. с.); U – напряжение на зажимах электроприемника; I – ток; φ – угол сдвига фаз между током и напряжением 1 .

При определении мощности генераторов в формулы входят э. д. с, при определении мощности электроприемииков – напряжения на их зажимах. При определении мощности электродвигателей учитывают также коэффициент полезного действия, так как на табличке электродвигателя указывается мощность на его валу.

Если мощности фаз S a (P a , Q a); S b (P b , Q b); S c (P c , Q c) одинаковы и соответственно равны S ф, P ф и Q ф, то мощность трехфазной системы, выраженная через фазные величины, равна сумме мощностей трех фаз и составляет:
полная S = 3 × S ф;
активная P = 3 × P ф;
реактивная Q = 3 × Q ф.

Мощность при соединении в звезду

При соединении в звезду линейные токи I и фазные токи I ф равны, а между фазными
и линейными напряжениями существует соотношение U = √3 × U ф, откуда U ф = U / √3.

Сопоставляя эти формулы, видим, что выраженные через линейные величины при соединении в звезду мощности равны:
полная S = 3 × S ф = 3 × (U / √3) × I = √3 × U × I ;
активная P = √3 × U × I × cos φ ;
реактивная Q = √3 × U × I × sin φ .

Мощность при соединении в треугольник

При соединении в треугольник линейные U и фазные U ф напряжения равны, а между фазными и линейными токами существует соотношение I = √3 × I ф, откуда I ф = I / √3.

Поэтому выраженные через линейные величины при соединении в треугольник мощности равны:
полная S = 3 × S ф = 3 × U × (I / √3) = √3 × U × I ;
активная P = √3 × U × I × cos φ ;
реактивная Q = √3 × U × I × sin φ .

Важное замечание. Одинаковый вид формул мощности для соединений в звезду и треугольник иногда служит причиной недоразумений, так как наталкивает недостаточно опытных людей на неправильный вывод, будто вид соединений всегда безразличен. Покажем на одном примере, насколько ошибочен такой взгляд.

Электродвигатель был соединен в треугольник и работал от сети 380 В при токе 10 А с полной мощностью

S = 1,73 × 380 × 10 = 6574 В×А.

Затем электродвигатель пересоединили в звезду. При этом на каждую фазную обмотку пришлось в 1,73 раза более низкое напряжение, хотя напряжение в сети осталось тем же. Более низкое напряжение привело к тому, что ток в обмотках уменьшился в 1,73 раза. Но и этого мало. При соединении в треугольник линейный ток был в 1,73 раза больше фазного, а теперь фазный и линейный токи равны.

Таким образом, линейный ток при пересоединении в звезду уменьшился в 1,73 × 1,73 = 3 раза.

Иными словами, хотя новую мощность нужно вычислять по той же формуле , но подставлять в нее следует иные величины , а именно:

S 1 = 1,73 × 380 × (10 / 3) = 2191 В×А.

Из этого примера следует, что при пересоединении электродвигателя с треугольника в звезду и питании его от той же электросети мощность, развиваемая электродвигателем, снижается в 3 раза .

Что происходит при переключении со звезды в треугольник и обратно в наиболее распространенных случаях?

Оговариваем, что речь идет не о внутренних пересоединениях (которые выполняют в заводских условиях или в специализированных мастерских), а о пересоединениях на щитках аппаратов, если на них выведены начала и концы обмоток.
1. При переключении со звезды в треугольник обмоток генераторов или вторичных обмоток трансформаторов напряжение в сети понижается в 1,73 раза, например с 380 до 220 В. Мощность генератора и трансформатора остается такой же. Почему? Потому что напряжение каждой фазной обмотки остается таким же и ток в каждой фазной обмотке такой же, хотя ток в линейных проводах возрастает в 1,73 раза.

При переключении обмоток генераторов или вторичных обмоток трансформаторов с треугольника в звезду происходят обратные явления, то есть линейное напряжение в сети повышается в 1,73 раза, например с 220 до 380 В, токи в фазных обмотках остаются теми же, токи в линейных проводах уменьшаются в 1,73 раза.

Значит, и генераторы и вторичные обмотки трансформаторов, если у них выведены все шесть концов, пригодны для сетей на два напряжения, отличающихся в 1,73 раза.

2. При переключении ламп со звезды в треугольник (при условии их присоединения к той же сети, в которой лампы, включенные звездой, горят нормальным накалом) лампы перегорят.

При переключении ламп с треугольника в звезду (при условии, что лампы при соединении в треугольник горят нормальным накалом) лампы будут давать тусклый свет. Значит, лампы, например, на 127 В в сеть напряжением 127 В должны включаться треугольником. Если же их приходится питать от сети 220 В, необходимо соединение в звезду с нулевым проводом (подробнее смотрите статью "Схема соединения "Звезда "). Соединять в звезду без нулевого провода можно только лампы одинаковой мощности, равномерно распределенные между фазами, как, например, в театральных люстрах.

3. Все сказанное о лампах относится и к сопротивлениям , электрическим печам и тому подобным электроприемникам.

4. Конденсаторы , из которых собирают батареи для повышения cos φ , имеют номинальное напряжение, которое указывает напряжение сети, к которой конденсатор должен присоединяться. Если напряжение сети, например, 380 В, а номинальное напряжение конденсаторов 220 В, их следует соединять в звезду. Если напряжение сети и номинальное напряжение конденсаторов одинаковы, конденсаторы соединяют в треугольник.

5. Как объяснено выше, при переключении электродвигателя с треугольника в звезду мощность его снижается примерно втрое. И наоборот, если электродвигатель переключить со звезды в треугольник , мощность резко возрастает, но при этом электродвигатель, если он не предназначен для работы при данном напряжении и соединении в треугольник, сгорит .

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник

применяют для снижения пускового тока, который в 5 – 7 раз превышает рабочий ток двигателя. У двигателей сравнительно большой мощности пусковой ток настолько велик, что может вызвать перегорание предохранителей, отключение автомата и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей 2 , может вызвать отключение контакторов и магнитных пускателей. Поэтому стремятся уменьшить пусковой ток, что достигается несколькими способами. Все они в итоге сводятся к понижению напряжения в цепи статора на период пуска. Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор либо переключают обмотку со звезды в треугольник. Действительно, перед пуском и в первый период пуска обмотки соединены в звезду. Поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает частоту вращения и ток снижается. Тогда обмотки переключают в треугольник.

Предупреждения:
1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат.
2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos φ . Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos φ переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока; в противном случае электродвигатель перегреется.

1 Активная мощность измеряется в ваттах (Вт), реактивная – в вольт-амперах реактивных (вар), полная – в вольт-амперах (В×А). Величины в 1000 раз большие соответственно называют киловатт (кВт), киловар (квар), киловольт-ампер (кВ×А).
2 Вращающий момент электродвигателя пропорционален квадрату напряжения. Следовательно, при снижении напряжения на 20% вращающий момент снижается не на 20, а на 36% (1² - 0,82² = 0,36).

Содержание:

Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнит ных потоков. За счет этих потоков, ротор двигателя начинает вращаться.

В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

Соединение обмоток звездой и треугольником

У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

Запуск трехфазного электродвигателя с переключением со звезды на треугольник

Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при .

Когда нужно переключаться с треугольника в звезду

Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

Представляет собой полезное устройство, которое применяется во многих сферах деятельности человека, начиная от бытовой жизни, заканчивая промышленностью. В различных шлифовальных машинах, на конвейерах, станочных агрегатах, системах вентиляции промышленного типа и другое. Электродвигатель имеет 3 вывода , поэтому может быть выполнено соединение звезда и треугольник к трехфазной сети переменного тока или трансформатору.

Конструкция двигателя

Обмотки располагаются на статоре, а ротор выполнен короткозамкнутым в виде беличьего колеса: алюминиевые или медные кольца по торцам соединены между собой параллельными перемычками. Статор намотан специальным образом с определенным количеством полюсов, что зависит от параметров мощности и питающей сети. Бытовые вентиляторы имеют всего 2 полюса, промышленные тяговые электродвигатели по 8 и более.

Преимущества использования асинхронных электродвигателей со схемой включения звезда или треугольник очевидны и заключаются в следующем:

Способы подключения к сети

Сейчас попытаемся разобраться, что такое звезда и треугольник, в чем разница между ними. Асинхронный 3-фазный электродвигатель имеет 3 обмотки, которые, соединены определенным образом. Они могут подключаться как к сети 380 В, так и к переменному напряжению 220 В. Поэтому двигатель можно считать универсальным, но его качество работы напрямую зависит от способа подключения к сети или отдельному питающему трансформатору.

Например, в режиме разгона, когда тот подключается последовательно в цепь двигателя для снижения пускового напряжения. По такому принципу действует частотный преобразователь, регулируя начальный момент посредством изменения частоты, не допуская превышение потребления мощности более, чем на 10-20%. В обычном режиме запуска асинхронный двигатель потребляет до 600% от номинала, что может стать причиной автоматического выключения вводных автоматов.

Обычно при открытии клеммной коробки на моторе можно увидеть 3 вывода и дополнительную скрутку. Это говорит о типе подключения обмоток, которым в этом случае является звезда. Раскрутив общее соединение, вы получите 6 выводов, являющиеся концами и началами каждой из 3-х обмоток. Поэтому появляется возможность выполнить подключение по схеме треугольника.

Иногда в зависимости от способа управления и алгоритма образования управляющего напряжения в приводе требуется переключение со звезды на треугольник. И делать это можно в автоматическом режиме, например, при разгоне, чтобы электродвигатель сразу обеспечивал высокий крутящий момент. Это чаще всего используется в частотных системах управления, где требуется более жестко регулировать динамику двигателя и контролировать скорость вращения.

Когда и какую схему лучше использовать, зависит от требований, но каждый из способов имеет свои особенности. Например, они заключаются в развиваемой и потребляемой мощности, разнице линейных и фазных напряжений, а, соответственно, динамических и электрических показателях.

Основные формулы

Перед тем, как ознакомиться с особенностями, как соединить электродвигатель звезда-треугольник, стоит вспомнить основные формулы расчета мощности и соотношения напряжений и токов между ними. При расчете устройств с питанием от сети переменного напряжения или отдельного трансформатора используют понятие полная мощность. Она обозначается большой буквой S и находится как произведение действующего значения напряжения и тока U × I . Также, есть возможность расчета, исходя из ЭДС, при котором S = E × I .

Кроме полной, также различают:

  • активную;
  • реактивную мощность.

В первом случае она обозначается буквой P = E × I × cos φ или P = U × I × cos φ . Во втором случае Q = E × I × sin φ или Q = U × I × sin φ . Где в формулах E – электродвижущая сила, I – ток, φ – угол между напряжением и током, создаваемым сдвигом фаз в обмотках.

Если обмотки двигателя одинаковы между собой по всем параметрам, то все виды мощностей определяются как произведение тока и напряжения, умноженного на 3.

Соединение двигателя в звезду

Наиболее часто используемым является именно соединение в звезду, потому что в таком режиме обеспечивается необходимая мощность и гарантируется хороший крутящий момент на валу. Но стоит понимать, что недогруженный двигатель в 3-фазной сети будет потреблять лишнюю мощность, поэтому лучше использовать менее мощный мотор или регулировать частоту питающего трансформатора или привода, в зависимости от источника напряжения.

А чтобы определить электрические параметры сети , необходимо использовать соотношение √3. Первоначально следует отметить, что при соединении в звезду линейные и фазные токи одинаковы, а напряжение определяется по формуле U = √3 × U ф. Найти из нее фазное напряжение несложно. Соответственно, мощности определяются с учетом этого соотношения:

S = √3 × U × I

Следует помнить, что если на трансформаторе кроме 3-х фаз имеется также и 4-ый вывод со средней точки, то он должен быть подключен к электродвигателю .

Особенности применения подключения в звезду

На предприятиях, да и во всех остальных сферах, основным типом соединения 3-фазных двигателей является именно звезда, а питаются они от общей подстанции или отдельного трансформатора, обеспечивая, таким образом, гальваническую развязку. Схема включения его обмоток особо не влияет на работу двигателя. Если они соединены в треугольник , то напряжение на выходе составит в 1.73 раза меньше и подключив двигатель к его обмоткам по схеме треугольника можно добиться примерного того же момента, что и в обычном режиме.

Фазные токи при соединении по схеме в звезду равны, а напряжение, подводимое к каждой из обмоток, в 1.73 раза меньше. Двигатель набирает свой момент за более длительное время, но при этом не перегревается. В таком режиме используются моторы на вентиляторах, помпах, шнеках и прочих агрегатах. Но, если необходимо увеличить момент и тяговую способность, то его кратковременно переключают в треугольник.

В таком случае к обмоткам подводится полное напряжение сети, а, следовательно, и увеличенный ток, что приводит к выделению дополнительной мощности на валу и нагреву мотора. Режим переключения на треугольник применяют для ускоренного запуска двигателя, а потому возвращают схему соединения в исходное состояние. Длительная работа в таком режиме приведет к скорому выходу из строя.

На сегодняшний день асинхронные электродвигатели большой мощности отличаются надежностью работы и высокой производительностью, удобством эксплуатации и обслуживания, а также приемлемой ценой. Конструкция этого типа двигателя позволяет выдерживать сильные механические перегрузки.

Как известно, из основ электротехники, основными частями любого двигателя являются статичный статор, и вращающейся внутри его ротор.

Оба эти элемента состоят из токопроводящих обмоток, при этом статорная обмотка находиться в пазах магнитопровода с соблюдением расстояния в 120 градусов. Начало и конец каждой обмотки выведены в электрическую распределительную коробку и установлены в два ряда.

При подаче напряжения от трехфазной электросети на обмотки статора создается магнитное поле. Именно оно заставляет ротор вращаться.

Как подключить электродвигатель правильно – знает опытный электрик.

Подключение асинхронного двигателя к электрической сети осуществляется только по следующим схемам: «звезда», «треугольник» и их комбинации.

Выбор того или иного подсоединения зависит от:

  • надежности энергосети;
  • номинальной мощности;
  • технических характеристик самого двигателя.

Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.

При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.

Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.

Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.

Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная схема вызывает скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом постепенно входит в норму.

Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.

Зависимость выбора от напряжения

Сейчас в промышленности более применимы асинхронные трехфазные электродвигатели отечественного производства, рассчитанные на номинальное напряжение от сети220/380 В. (агрегаты на 127/220 В уже редко используются).

Схема подключения «треугольник»- единственно верная для подключения к российским энергосетям зарубежных электромоторов номинальным напряжением 400-690 В.

Подключение трехфазного двигателя любой мощности осуществляется по определенному правилу: агрегаты низкой мощности присоединяются по схеме «треугольник», а высокомощные – только «звездой».

Так электромотор прослужит долго и проработает без сбоев.

Способ «звезды» применяется при подключении трехфазных асинхронных двигателей номинальным напряжением 127/220 В к однофазным сетям.

Как снизить пусковые токи электродвигателя?

Явление значительного повышения пусковых токов при запуске высокомощных устройств, подсоединенных по схеме Δ, приводит в сетях с перегрузкой к кратковременному падению напряжения ниже допустимого значения. Все это объясняется особой конструкцией асинхронного электродвигателя, у которого ротор с большой массой обладает высокой инерционностью. Поэтому на начальном этапе работы мотор перегружается, особенно это актуально для роторов центробежных насосов, турбинных компрессоров, вентиляторов, станочного оборудования.

Чтобы снизить влияние всех этих электротехнических процессов, используют подключение электродвигателя «звездой» и «треугольником». Когда двигатель набирает обороты, ножи специального переключателя (пускателя с несколькими трехфазными контакторами) переводит обмотки статора со схемы Y на Δ.

Для реализации смены режимов кроме пускателя нужно специальное реле времени, благодаря которому происходит временная задержка 50-100 мс при переключении и защита от трехфазного короткого замыкания.

Сама процедура использования комбинированной схемы Y/ Δ эффективно помогает уменьшить пусковые токи мощных трехфазных агрегатов. Происходит это следующим образом:

При подаче напряжения 660 В по схеме «треугольник», каждая обмотка статора получает 380 В (√3 раза меньше), а, следовательно, по закону Ома, в 3 раза уменьшается сила тока. Поэтому при запуске в свою очередь в 3 раза снижается мощность.

Но такие переключения возможны только для моторов с номинальным напряжением 660/380 В при включении их в сеть с такими же значениями напряжения.

Опасно подключать электродвигатель с номинальным напряжением 380/220 В в сеть 660/380 В, его обмотки могут быстро перегореть.

И также помните, что вышеописанные переключения недопустимо применять для электромоторов, у которых на валу размещена нагрузка без инерции, к примеру, вес лебедки или сопротивление поршневого компрессора.

Для такого оборудования устанавливают специальные трехфазные электрические двигатели с фазным ротором, где реостаты уменьшают значение токов при пуске.

Чтобы изменить направление вращения электромотора, необходимо сменить местами две любые фазы сети при любом типе подключения.

Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели (рубильники).

СОЕДИНЕНИЯ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ

способы соединений элементов электрич. цепей, при к-рых ветви цепи образуют соответственно трёхлучевую звезду и треугольник. Наибольшее распространение С. з. и т. получили в трёхфазных электрич. цепях. При соединении звездой концы обмоток трёх фаз генератора (трансформатора, электродвигателя) объединяются в общую нейтральную точку, а начала обмоток присоединяются к трём отходящим проводам ("линейные провода"). При соединении треугольником конец каждой фазы соединяется с началом следующей и к полученным трём узлам присоединяются линейные провода. Если и генератор и приёмник электроэнергии соединены звездой, то нейтр. точки могут быть связаны четвёртым (нейтр.) проводом. У симметричных приёмников, соединённых звездой или треугольником, сопротивления всех трёх фаз одинаковы. В симметричной трёхфазной цепи, соединённой треугольником, напряжения U л между линейными проводами равны напряжениям U ф на фазах приёмника, а силы тока в линейных проводах в корень из 3 раз больше, чем в фазах приёмника. При соединении звездой линейные напряжения больше фазных в корень из 3 раз, а силы тока в линейных проводах и в фазах одинаковы. См. рис.


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "СОЕДИНЕНИЯ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ" в других словарях:

    СОЕДИНЕНИЕ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ - способы соединений, применяемые в трехфазной электрической цепи (рис. С 15). При соединении звездой концы обмоток трех фаз генератора (трансформатора, электродвигателя) соединяют в общую нейтральную точку, а начала обмоток присоединяют к трем… … Металлургический словарь

    В электротехнике, способы соединения элементов электрических цепей (См. Электрическая цепь), при которых ветви цепи образуют соответственно треугольник и трехлучевую звезду (см. рис.). Наибольшее распространение Т. и з. с. получили в… …

    Трёхфазная система, совокупность трёх однофазных электрических цепей переменного тока (См. Переменный ток) (называемых фазами), в которых действуют три переменных напряжения одинаковой частоты, сдвинутых по фазе друг относительно друга;… …

    Попытки применить электричество как двигательную силу были сделаны еще в начале прошлого столетия. Так, после того как (1821 г.) Фарадеем было открыто явление вращения магнитов вокруг проводников с токами и наоборот, Sturgeons и Barlow построили… …

    - (англ. selsyn, от англ. self сам и греч. sýnchronos одновременный, синхронный) Электрическая машина, позволяющая осуществлять угловое перемещение вала какого либо устройства или механизма в соответствии с угловым перемещением другого вала … Большая советская энциклопедия

    Э. канализация представляет собой ряд приспособлений и сооружений для распределения Э. энергии от данного источника к приемникам, расположенным в разных пунктах данной местности. Главной частью Э. канализации являются провода, по которым… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона - Трёхфазная система электроснабжения частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый… … Википедия

Применение однофазных систем для передачи большого количества энергии на значительные расстояния вызвало необходимость удешевления стоимости электрических линий. Кроме того, однофазные двигатели не имели начального пускового момента и не соответствовали требованиям промышленного электропривода. Поэтому использование однофазных систем ограничивалось электроосветительными установками. В связи с этим проблема передачи энергии превратилась в комплексную: необходимо было одновременно разработать схему экономичной электропередачи высокого напряжения и надежную простую конструкцию электродвигателя, удовлетворяющего требованиям промышленного электропривода.

В разработке этой проблемы принимали участие ученые и инженеры разных стран. Однако выдающихся результатов добился М. О. Доливо-Дорбровольский, придавший своим исследованиям практический характер. Он по праву считается основоположником создания трехфазной техники.

Трехфазные системы имеют следующие преимущества перед однофазными:

Экономия до 25% цветных металлов на сооружение линий электропередачи.

Возможность применения трехфазных асинхронных двигателей, простых по конструкции и надежных в эксплуатации.

Наличие двух эксплуатационных напряжений при четырехпроводной системе, полученной в случае соединения звездой.

Трехфазную систему можно рассматривать как частный случай многофазной. Под многофазной системой подразумевают совокупность нескольких цепей, в которых одновременно действуют Э.Д.С., имеющие одинаковою частоту и амплитуду, но сдвинутых между собой по фазе. В трехфазной системе связаны вместе пары цепи, в каждой из которых генерируется равная по амплитуде синусоидальная Э.Д.С. одной и той же частоты, но сдвинутая по фазе относительно Э.Д.С., в других цепях на 1/3 периода.

Схема простейшего генератора трехфазного тока показана на рис. 3.1.

Рис.3.1. схема генератора трехфазного тока

На оси жестко закреплены три одинаковые катушки (обмотки), плоскости которых сдвинуты относительно друг друга на 120°. При вращении системы этих катушек в однородном магнитном поле с постоянной угловой скоростью со, в каждой из них индуктируется переменная синусоидальная Э.Д.С. Амплитудные значения и частота этих Э.Д.С. будут одинаковы, но по фазе Э.Д.С. сдвинуты относительно друг друга на 1/3 периода, в силу того, что следующая катушка занимает в пространстве положение предыдущей спустя 1/3 оборота. Начало обмоток трехфазного генератора принято обозначать буквами А, В, С, а соответствующие им концы - X, Y, Z. Принимая за начало отсчета времени момент, когда Э.Д.С. в обмотке А-Х равна нулю можно записать следующие зависимости:


(3.1)

Соответствующие системе уравнений графики е(t) показаны на рис.3.2.

Рис.3.2. кривые Э.Д.С. трехфазной системы

В комплексной форме система уравнений (4.1) запишется в виде:

(3.2)

Трехфазная система в которой Э.Д.С. во всех фазах одинаковы и угол между ними равен 120°, называется симметричной. Для симметричной системы Е А = E В = Е С = Е ф .

Векторная диаграмма Э.Д.С. (рис.3.3.) представляет собой симметричную трехлучевую звезду.

Рис.3.3. Векторы фазных Э.Д.С. трехфазной системы

При расчете трехфазных цепей используют фазовый оператор .

Основное свойство фазового оператора:

Уравнение (3.3) можно переписать в виде (1+а+а 2)=0.

С использованием фазового оператора система уравнений (3.2) запишется следующем образом:

(3.4)

Для симметричной системы, используя уравнение (3.3)

Е А +Е В +Е С =Е А + а 2 Е В + аЕ С = Е ф (1+а 2 + а)=0 .

Очередность, в которой фазовые Э.Д.С. достигают максимального значения, называется порядком чередования фаз. В рассмотренном случае за фазой А следует фаза В, затем - фаза С. Такой порядок чередования фаз называется прямой. Для получения обратного порядка чередования фаз (А, С, В) достаточно изменить направление вращения катушек (рис. 3.1).

Соединения звездой и треугольником

Существуют два основных способа соединения обмоток генераторов и приемников в трехфазных цепях: соединение звездой и треугольником (рис.3.4. и рис.3.5.)


Рис.3.4. Трехфазная система, соединенная по схеме звезды


Рис.3.5. Трехфазная система, соединенная по схеме треугольник

При соединении звездой (рис. 3.4.) все концы (Х, У, Z) фазных обмоток генератора соединяют в одну общую точку. Общие точки генератора и приемника называют нулевой точкой генератора (0) и нулевой точкой приемника (О /), а соединяющий их провод - нулевым или нейтральным. Провода, соединяющие обмотки генератора с приемником называют линейными. При соединении треугольником (рис. 3.5.) фазные обмотки генератора соединяют последовательно так, чтобы начало одной обмотки соединялось с концом другой. При таком соединении фазные Э.Д.С. направлены одинаково и, следовательно, внутри треугольника генератора действует их алгебраическая сумма. При постоянном токе такое последовательное соединение источников в замкнутом контуре вызвало бы большой ток короткого замыкания . Но в трехфазной системе в любой момент времени e А +e В +e С =0 (рис. 3.2.). Поэтому никакого внутреннего уравнительного тока в треугольнике, образуемом обмотками генератора, не возникает.

Общие точки каждой пары фазных обмоток генератора и общие точки каждой пары ветвей приемника соединяются проводами, которые называются линейными. Схемы соединения обмоток источников питания и приемников не зависят друг от друга. Лучи звезды или ветви треугольника приемника называют фазами приемника, а сопротивления фаз приемника - фазными сопротивлениями. Э.Д.С., наводимые в фазных обмотках генератора, напряжения на фазах приемника и токи в фазах называют, соответственно, фазными Э.Д.С., напряжениями и токами (E Ф,U Ф, I Ф). Напряжения между линейными проводами и токи в них называют линейными напряжениями и токами (U л, I л). При соединении фаз звездой линейные и фазные токи равны I л =I Ф. При соединении фаз треугольником линейное напряжение между проводами равно фазному напряжению U л =U Ф.

Положительное направление токов во всех линейных проводах берется от источника питания к приемнику, а в нейтральном проводе - от нейтральной точки приемника к нейтральной точке источника питания. Положительные направления Э.Д.С. в ветвях треугольника источника питания выбирают в направлении А С В А, а напряжений и токов в ветвях треугольника нагрузки - в направлении А В С А (рис. 3.5.). Трехфазный приемник называют симметричным, если комплексные сопротивления всех фаз одинаковы. В противном случае он называются несимметричным.

Если симметричный приемник подключен к симметричной системе Э.Д.С., то получается симметричная система токов.

Режим работы трехфазной цепи , при котором трехфазные системы напряжений и токов симметричны, называется симметричным режимом.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: