Катушка тесла и исследование ее возможностей. Как сделать катушку Тесла (трансформатор), устройство и применение Катушка тесла из импульсного блока питания

электромагнитного поля катушки Тесла

Введение………………………………………………………..………...............2 стр.

Теоретическая часть Никола Тесла и его изобретения…………………..…………............5 стр. Схема установки катушки Тесла…………………………..…............8 стр. Практическая часть Социологический опрос среди обучающихся ФСОШ №5…… 8 стр. Сборка катушки Тесла…………….…………….…..…………......9 стр. Расчет основных характеристик изготовленной катушки Тесла 9 стр. Экспериментальные опыты применения катушки Тесла….……11 стр. Современное применение идей Тесла…………………………..13 стр. Фото и видео отчет проведения исследования………………..14 стр.

Заключение………………………………………………….……..................15 стр.

Список литературы……………………………………….……………….…..16 стр.

Приложения………………………………………………….…….……….…..18 стр.

Введение

Я мог бы расколоть земной шар, но никогда

не сделаю этого.

Моей главной целью было указать на новые явления

и распространить идеи, которые и станут

отправными точками для новых исследований.

Никола Тесла

«Я, наконец, преуспел в создании разрядов, мощность которых значительно превосходит силу молний. Вам знакомо выражение «выше головы не прыгнешь»? Это заблуждение. Человек может все». В Международный год света и световых технологий, думаю, стоит вспомнить о легендарной личности Никола Тесла, причем о смысле некоторых его изобретений спорят, и по сей день. О нем сказано много и разного, но люди в большинстве своем, в том числе и я, единодушны в своем мнении – Тесла сделал немало для развития науки и техники для своего времени. Многие его патенты воплотились в жизнь, часть же до сих пор остается за гранью понимания сути. Но основными заслугами Тесла можно считать исследования природы электричества. Особенно высоковольтного. Тесла поражал своих знакомых и коллег удивительными экспериментами, в которых без труда и опаски он управлял высоковольтными генераторами, которые вырабатывали сотни, а иногда и миллионы вольт. Еще в 1900-х годах Тесла мог передавать на огромные расстояния ток без проводов, получить ток 100 млн. ампер и напряжение 10 тыс. вольт. И поддерживать такие характеристики любое необходимое время. Для тех, кто жил рядом с ним, мир менялся, превращался в сказочное пространство, где ничему не стоит удивляться. Вспыхивали северные сияния над всей Атлантикой, обычные бабочки превратились в ярких светлячков, шаровые молнии запросто доставались из чемоданов и использовались для освещения гостиных. Его опыты всегда балансировали на грани зла и добра. Падение тунгусского метеорита, землетрясение в Нью-Йорке, испытания чудовищного оружия, способного мгновенно уничтожать целые армии – вот что еще, кроме светящихся бабочек приписывают экспериментам Тесла. Именно он послужил для многих писателей-фантастов образом безумного профессора, изобретения которого грозят уничтожить всю планету. На самом деле мы ничего не знаем о том, каким человеком был Никола Тесла, каким героем он должен стать для биографов хорошим или плохим.


Экспериментальная физика имеет огромное значение в развитии науки. Лучше один раз увидеть, чем сто раз услышать. Никто не будет спорить с тем, что эксперимент - это мощный импульс к пониманию сущности явлений в природе. Любоваться природой можно, и не зная физики. Но понять ее и увидеть то, что скрыто за внешними образами явлений, можно лишь с помощью точной науки и проведения эксперимента. Сегодня можно с уверенностью сказать, что точным в природе является только свершившийся факт, т. е. опыт или эксперимент, или результаты природного процесса, течение которого не зависит от человека. Непоколебимым остается только результат, полученный посредством того или иного действия. Как уже сказал, это единственное несомненное в гипотезе. Всем известно, что любая гипотеза держится на трех китах: результат эксперимента, его описание и вывод, который опирается на признанные стереотипы (Приложение 1).

Эксперименты с электричеством. Если рассуждать, ну что еще можно открывать и экспериментировать? Ведь сейчас без электричества человечество уже давно не мыслит своего существования. С помощью него работают все бытовые приборы, вся наша промышленность, медицинские приборы. Одно но, сам ток доходит к нам, увы, лишь по проводам. Это все очень далеко от того, что Никола Тесла мог делать более 100 лет назад, и чего современная физика и не может объяснить до сих пор. Современная физика достичь таких показателей просто не в состоянии. Он включал и выключал электродвигатель дистанционно, в его руках сами собой загорались электрические лампочки. Современные ученые достигли лишь планки в 30 миллионов ампер (при взрыве электромагнитной бомбы), и 300 миллионов при термоядерной реакции - да и то, на доли секунды.

Актуальность заключается в том, что в наше время, энтузиасты и ученые мира пытаются повторить опыты гениального ученого и найти их применение. В мистику вдаваться не буду, я попытался сделать кое-что эффектное по «рецептам» Тесла. Это катушка Тесла. Увидев ее один раз, вы никогда не забудете это невероятное и удивительное зрелище.

Объект исследования: катушка Тесла.

Предмет исследования: электромагнитное поле катушки Тесла, высокочастотные разряды в газе.

Цель исследования: изготовить высокочастотную катушку Тесла и на основе собранной действующей установки провести эксперименты.

Объект, предмет и цель исследования обусловили постановку следующей гипотезы: вокруг катушки Тесла образуется электромагнитное поле огромной напряженности, способное передавать электрический ток беспроводным способом.

Изучить литературу по проблеме исследования. Познакомиться с историей изобретения и принципом работы катушки Тесла. Поиск деталей и изготовление катушки Тесла. Провести социологический опрос среди учащихся 7-11 классов «Федоровской СОШ№5». Провести расчеты характеристик катушки Тесла и опыты, демонстрирующие ее работу. Подготовить фото и видеоотчет о проделанной работе для ознакомления учащихся 9-11 классов.

Методы исследования:

Эмпирические: наблюдение высокочастотных электрических разрядов в газовой среде, исследование, эксперимент. Теоретические: конструирование катушки Тесла, анализ литературы, статистическая обработка результатов.

Этапы исследования:


Теоретическая часть. Изучение литературы по проблеме исследования. Практическая часть. Изготовление трансформатора Тесла и демонстрация невероятных свойств электромагнитного поля катушки Тесла

Новизна: заключается в том, что, как и многие изобретатели-экспериментаторы, я

впервые, изучив , собрал катушку Тесла и в рамках проведения Международного года света и световых технологий-2015 провел серию опытов и тем самым, показал значимость трудов Тесла.

Практическая значимость: результат работы носит просветительный характер, это позволит, повысит заинтересованность учеников к углубленному изучению таких предметов, как физика, юных исследователей - к , и возможно для кого-то определит область дальнейшей деятельности.

Теоретическая часть

I.1.Никола Тесла и его изобретения

Что мы знаем о Николе Тесла и его работах? Простому обывателю деятельность Тесла безразлична и неинтересна. В школах и институтах о Тесла упоминается только когда говорят об одноименной единице индуктивности. Так общество "отблагодарило" великого практика за весь вклад, который он внес в развитие электротехники. Вся его деятельность окутана завесой таинственности, а многие просто считают его шарлатаном от науки. Попытаемся рассмотреть значимость «наследия» Тесла.

НИКОЛА ТЕСЛА — изобретатель в области электротехники и радиотехники, инженер, физик. Родился и вырос в Австро-Венгрии, в последующие годы в основном работал во Франции и США.

Также он известен как сторонник существования эфира: известны многочисленные его опыты и эксперименты, целью которых было показать наличие эфира как особой формы материи, поддающейся использованию в технике. есла названа плотности магнитного потока. Современники-биографы считали Тесла «человеком, который изобрёл XX век» и «святым заступником» современного электричества. Ранние работы Тесла проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение.

До 1882 года Тесла работал инженером-электриком в правительственной телеграфной компании в Будапеште. В феврале 1882 года Тесла придумал, как можно было бы использовать в электродвигателе явление, позже получившее название вращающегося магнитного поля. В Тесла работал над изготовлением модели асинхронного электродвигателя, а в 1883 году демонстрировал работу двигателя в мэрии Страсбурга.

1884 года Тесла прибыл в Нью-Йорк. Он устроился на работу в компанию Томаса Эдисона в качестве инженера по ремонту электродвигателей и генераторов постоянного тока. Эдисон довольно холодно воспринимал новые идеи Тесла и всё более открыто высказывал неодобрение направлению личных изысканий изобретателя. Весной 1885 года Эдисон пообещал Тесле 50 тыс. долларов, если у него получится конструктивно улучшить электрические машины постоянного тока, придуманные Эдисоном. Никола активно взялся за работу и вскоре представил 24 разновидности машины Эдисона, новый коммутатор и регулятор, значительно улучшающие эксплуатационные характеристики. Одобрив все усовершенствования, в ответ на вопрос о вознаграждении Эдисон отказал Тесле. Оскорблённый Тесла немедленно уволился.

В 1888—1895 годах Тесла занимался исследованиями магнитных полей и высоких частот в своей лаборатории. Эти годы были наиболее плодотворными, именно тогда он запатентовал большинство своих изобретений.

В конце 1896 года Тесла добился передачи радиосигнала на расстояние 48 км.

В Колорадо Спрингс Тесла организовал небольшую лабораторию. Для изучения гроз Тесла сконструировал специальное устройство, представляющее собой трансформатор, один конец первичной обмотки которого был заземлён, а второй соединялся с металлическим шаром на выдвигающемся вверх стержне. К вторичной обмотке подключалось чувствительное самонастраивающееся устройство, соединённое с записывающим прибором. Это устройство позволило Николе Тесле изучать изменения потенциала Земли, в том числе и эффект стоячих электромагнитных волн, вызванный грозовыми разрядами в земной атмосфере. Наблюдения навели изобретателя на мысль о возможности передачи электроэнергии без проводов на большие расстояния.

Следующий эксперимент Тесла направил на исследование возможности самостоятельного создания стоячей электромагнитной волны. На огромное основание трансформатора были намотаны витки первичной обмотки. Вторичная обмотка соединялась с 60-метровой мачтой и заканчивалась медным шаром метрового диаметра. При пропускании через первичную катушку переменного напряжения в несколько тысяч вольт во вторичной катушке возникал ток с напряжением в несколько миллионов вольт и частотой до 150 тысяч герц.

При проведении эксперимента были зафиксированы грозоподобные разряды, исходящие от металлического шара. Длина некоторых разрядов достигала почти 4,5 метров, а гром был слышен на расстоянии до 24 км.

На основании эксперимента Тесла сделал вывод о том, что устройство позволило ему генерировать стоячие волны, которые сферически распространялись от передатчика, а затем с возрастающей интенсивностью сходились в диаметрально противоположной точке земного шара, где-то около островов Амстердам и Сен-Поль в Индийском океане.

В 1917 году Тесла предложил принцип действия устройства для радиообнаружения подводных лодок.

Одним из его самых знаменитых изобретений является Трансформатор (катушка) Тесла.

Трансформатор Тесла, также катушка Тесла — устройство, изобретённое Николой Тесла и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

Простейший трансформатор Тесла состоит из двух катушек — первичной и вторичной, а также разрядника, конденсаторов, тороида и терминала.

Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.

Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов.

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

Во всех типах трансформаторов Тесла основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию.

I.2. Схема установки катушки Тесла

Резонансный генератор, катушка или трансформатор Тесла – гениальное изобретение великого сербского изобретателя, физика и инженера. Трансформатор состоит из двух катушек, у которых нет общего железного сердечника. На первичной обмотке должно быть не менее десятка витков толстой проволоки. На вторичную наматывают уже как минимум 1000 витков. Учтите, что катушка Тесла обладает таким коэффициентом трансформации, который в 10-50 раз больше, чем отношение количества витков на второй обмотке к первой. На выходе напряжение такого трансформатора может превышать несколько миллионов вольт. Именно это обстоятельство и обеспечивает возникновение зрелищных разрядов, длина которых может достигать сразу нескольких метров. Очень важно: и конденсатор, и первичная обмотка обязательно должны, в конечном счете, образовывать специфический колебательный контур, входящий в состояние резонанса с вторичной обмоткой. К Схема установки катушки Тесла предполагает силу тока 5-8 А. Максимальное значение этой величины, которое еще оставляет шанс на выживание, равно 10 А. Так что при работе ни на секунду не забывайте о простейших мерах предосторожности.

В Интернете можно найти разные варианты изготовления источников высокой частоты и напряжения. Мы выбрали одну из схем (Приложение 2), которая состоит из:

Источник питания (220В – 24 В) Переменный резистор Резистор Первичная катушка (9 витков) Вторичная катушка (1000 витков) Транзистор на радиаторе (MJE 13007) Практическая часть

II.1 Социологический опрос среди обучающихся 7-11 классов ФСОШ№5

В опросе приняло участие 325 человек. Были предложены вопросы:

1. Слышали ли Вы об изобретениях Никола Тесла (катушка Тесла)?

2. Хотели бы Вы увидеть серию экспериментов применения катушки Тесла?

После обработки результатов, итог следующий: 176 обучающихся слышали об изобретениях Тесла, 156 учащихся - не слышали. 97 человек видели видео экспериментов по сети Интернет, 228 не имеют представления, как выглядит катушка и ее применение. Все, 325 учащихся хотели бы посмотреть результат исследовательской работы и серию опытов применения катушки Тесла.

II.2 Сборка катушки Тесла

Обратимся к устройству, которое сейчас известно, как трансформатор (катушка) Тесла. Во всем мире "тесластроители" ежегодно воспроизводят его многочисленные модификации. Основной целью у большинства таких радиолюбителей Тесла, является получение световых и звуковых эффектов, достигаемых в экспериментах с высоким напряжением, которое присутствует на выходе высоковольтной катушки трансформатора Тесла (ТТ). Многих также привлекают идеи Тесла по генерации энергии большой мощности, а еще более привлекательным, является попытка создания "сверхединичного" (СЕ) устройства на основе ТТ. Эта сфера альтернативной науки.

Установку я собирал сам на основе схемы (Приложение 2, Рис.1, 2, 3, 4, 5). Катушка, намотанная на каркасе от пластмассовой (сантехнической) трубы с диаметром 5 см. Первичная обмотка содержит всего 9 витков, провод диаметром 1,5 мм, был использован одножильный медный провод в резиновой изоляции. Вторичная обмотка содержит 1000 витков провода 0,1 мм. Вторичная обмотка мотается аккуратно, виток к витку. Это устройство производит высокое напряжение при высокой частоте. Катушка Теслы - это демонстрационный генератор высокочастотных токов высокого напряжения. Устройство может быть использовано для беспроводной передачи электрического тока, на большие расстояния. В ходе исследования я продемонстрирую действие изготовленной мною катушки Тесла (Приложение 3, Рис.6).

II.3 Расчет основных характеристик изготовленной катушки Тесла

    ЭДС: 24 В. Два аккумулятора от шуруповёрта по 12 В каждый. Сопротивление: R=50075 Ом. R= R1+ R2 (последовательное соединение) Внутренним сопротивлением источника, проводов, обмоток посчитано необходимым, пренебречь. 1)Переменный резистор (Реостат) 50 КОм. 2)Резистор 75 Ом. Сила тока: 0,5 мА. Рассчитано из закона Ома для полной цепи I= ЭДС/ R+r

и проверено амперметром.

    Частота колебаний: 200 МГц. Расчеты произведены при помощи CircutLab.

    Входное напряжение: 24 В. Выходное напряжение: ~2666,7 В. Коэффициент трансформации – это величина, равная отношению напряжений в первичной и вторичной обмотках трансформатора.

K=U1/U2=N1/N2, где

N1 - число витков на первичной обмотке трансформатора

N2- число витков на вторичной обмотке трансформатора

при условии K < 1, U2 > U1, N2> N1 – повышающий трансформатор

при условии K >1, U1> U2, N1> N2 – понижающий трансформатор

K=U1/U2 =24/2667=0,009 < 1 повышающий трансформатор

K= N1/N2 =9/1000=0,009 < 1 повышающий трансформатор

Построим график зависимости выходного напряжения от числа витков вторичной катушки (Приложение 4). Из диаграммы видно, чем больше число витков на вторичной обмотке, тем больше выходное напряжение катушки.

ВЫВОД: разряды катушки не являются опасными для человеческого организма при кратковременном воздействии, так как сила тока ничтожно мала, а частота и напряжение слишком высоки.

II.4 Экспериментальные опыты применения катушки Тесла

С готовой катушкой Тесла можно провести ряд интересных опытов, соблюдая правила безопасности. Для проведения опытов у вас должна быть очень надежная проводка, иначе беды не избежать. К выходной катушке высокого напряжения можно даже прикоснуться куском металла. Почему при прикосновении к источнику напряжения 250000 В высокой частоты 500 кГц с экспериментатором ничего не случается? Ответ прост. Николой Тесла была открыта и эта «страшная» тайна – токи высоких частот при высоких напряжениях безопасны.

Во время работы катушка Тесла создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают катушки Тесла ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Тесла производит несколько видов разрядов:

    Спарк — это искровой разряд. Также имеет место особый вид искрового разряда — скользящий искровой разряд. Стримеры — тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Протекает от терминала катушки прямо в воздух, не уходя в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора. Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности. Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга

Интересно заметить, что некоторые ионные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, ионы натрия меняют обычный окрас спарка на оранжевый, а бора — на зелёный, марганца – на синий, лития – на малиновый окрас.

Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление это связано с превращением стримеров в искровые каналы, который сопровождается резким возрастанием силы тока и энергии, выделяющейся в них.

С помощью изготовленной катушки Тесла демонстрирую множество красивых и эффектных экспериментов. Демонстрации с использованием трансформатора. Пронаблюдаем разряды.

Демонстрация №1. Демонстрация газовых разрядов. Стример, спарк, дуговой разряд.

Оборудование: катушка (трансформатор) Тесла, отвертка.

При включении катушки, с терминала начинает выходить разряд, который в длину 6-7 мм. (Приложение 5, Рис.7, 8).

Демонстрация №2. Демонстрация тлеющего разряда. Свечение спектральных трубок, наполненных инертными газами: гелием, неоном.

Оборудование: катушка (трансформатор) Тесла, набор спектральных трубок.

При поднесении этих ламп к катушке Тесла, мы будем наблюдать, как газ, которыми наполнены трубки, будет светиться (Приложение 6, Рис.9, 10,11).

Демонстрация №3. Демонстрация разряда в люминесцентной лампе и лампе дневного света (ЛДС).

Оборудование: катушка (трансформатор) Тесла, люминесцентная лампа, лампа дневного света.

Наблюдается разряд в люминесцентной лампе (Приложение 7, Рис.12, 13).

Демонстрация №4. Эксперимент с линейками.

Оборудование: катушка (трансформатор) Тесла, металлическая линейка, деревянная линейка.

При внесении металлической линейки в разряд стример ударяется об нее, при этом линейка остается холодной. При внесении деревянной линейки в разряд, стример быстро охватывает ее поверхность и через несколько секунд линейка загорается (Приложение 8, Рис.14, 15, 16).

Демонстрация №5. Эксперимент с бумагой.

Оборудование: катушка (трансформатор) Тесла, бумага.

При внесении бумаги в разряд, стример быстро охватывает ее поверхность и через несколько секунд бумага вспыхивает (Приложение 9, Рис.17).

Демонстрация №6. Эксперимент с венчиком.

Разветвляем жилы, заранее припаиваем к терминалу (Приложение 10, рис.18).

Демонстрация №7. Дерево из плазмы.

Оборудование: катушка (трансформатор) Тесла, тонкий многожильный провод.

Разветвляем жилы, у заранее зачищенного от изоляции провода, и прикручиваем к терминалу (Приложение 11, Рис.19,20, 21, 22).

Демонстрация №8. Ионный мотор.

Оборудование: катушка (трансформатор) Тесла, пластина-крест.

К терминалу трансформатора прикручиваем иглу, сверху по центру устанавливаем пластину-крест. После включения катушки из 4 концов креста начинают выходить стримеры и под их действием пластина начинает вращаться (Приложение 12, Рис.23).

II.5 Современное применение идей Тесла

Переменный ток является основным способом передачи электроэнергии на большие расстояния.

    Электрогенераторы являются основными элементами в генерации электроэнергии на ГЭС, ТЭС и т. д. Электродвигатели, впервые созданные Николой Тесла, используются во всех современных станках, электропоездах, электромобилях, трамваях, троллейбусах. Радиоуправляемая робототехника получила широкое распространение не только в детских игрушках и беспроводных телевизионных и компьютерных устройствах (пульты управления), но и в военной сфере, в гражданской сфере, в вопросах военной, гражданской и внутренней, а также и внешней безопасности стран и т. п. Беспроводные заряжающие устройства начинают использоваться для зарядки мобильных телефонов или ноутбуков.
    Переменный ток, впервые полученный Тесла, является основным способом передачи электроэнергии на большие расстояния
    Оригинальные современные противоугонные средства для автомобилей работают по принципу все тех же катушек. Использование в развлекательных целях и шоу. Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов, беспроводной передачи данных и беспроводной передачи энергии. В фильмах эпизоды строятся на демонстрации трансформатора Тесла, в компьютерных играх. В начале XX века трансформатор Тесла также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи, не причиняли вреда внутренним органам, оказывая при этом «тонизирующее» и «оздоравливающее» влияние. Он используется для поджига газоразрядных ламп и для поиска течей в системах. Основное его применение в наши дни — познавательно-эстетическое. В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.

Вывод: неверно считать, что катушка Тесла не имеет широкого практического применения. Перечисленные мною выше примеры ярко об этом свидетельствуют. Тем не менее, основное его применение в наши дни — познавательно-эстетическое (Приложение 13, Рис.24).

II.6. Фото и видео отчет проведения исследования

В приложении фото отчет, видео отчет прилагается к работе на электронном носителе. Буклет-памятка «Современное применение идей Тесла» (Приложение 14).

Заключение

Одной из самых ярких, интересных и неординарных личностей среди ученых-физиков является Никола Тесла. Почему-то его несильно жалуют на страницах школьных учебников физики, хотя без его трудов, открытий и изобретений трудно представить себе существование обыденных, казалось бы, вещей, таких как, например, наличие электротока в наших розетках. Подобно Ломоносову, Никола Тесла опередил своё время и не получил заслуженного признания при жизни, впрочем, и поныне его труды не оценены по достоинству.

Тесла удалось соединить в одном приборе свойства трансформатора и явление резонанса. Так был создан знаменитый резонанс-трансформатор, сыгравший огромную роль в развитии многих отраслей электротехники, радиотехники и широко известный под названием "трансформатора Тесла".

Трансформатор (катушка) Тесла - удивительное устройство, позволяющее получить мощный интенсивный поток автоэлектронной эмиссии чрезвычайно экономичным способом. Однако его уникальные свойства и полезные применения далеко еще не исчерпаны.

Бесспорно, Никола Тесла является интересной фигурой с точки зрения на перспективу использования на практике его нетрадиционных идей. Сербскому гению удалось оставить заметный след в истории науки и техники.

Его инженерные разработки нашли применение в области , электротехники, кибернетики, медицине. Деятельность изобретателя окутана мистическими рассказами, среди которых надо выбрать именно те, в которых содержится правдивая информация, действительные исторические факты, научные достижения и конкретные результаты.

Вопросы, которыми занимался Никола Тесла, остаются актуальными и сегодня. Их рассмотрение позволяет творческим инженерам и студентам физических специальностей шире смотреть на проблемы современной науки, отказаться от шаблонов, научиться отличать правду от вымысла, обобщать и структурировать материал. Поэтому взгляды Н. Тесла можно считать актуальными ныне не только для исследований в области истории науки и техники, но как достаточно действенной средство поисковых работ, изобретение процессов и использования новейших технологий.

В результате моих исследований гипотеза подтвердилась: вокруг катушки Тесла образуется электромагнитное поле огромной напряженности, способное передавать электрический ток беспроводным способом:

    лампочки, наполненные инертным газом светятся вблизи катушки, следовательно, вокруг установки действительно существует электромагнитное поле высокой напряженности; лампочки загорались сами по себе у меня в руках на определенном расстоянии, значит, электрический ток может передаваться без проводов.

Необходимо отметить и еще одну важную вещь: действие этой установки на человека: как Вы заметили при работе меня не било током: токи высокой частоты, которые проходят по поверхности человеческого организма не причиняют ему вреда, наоборот, оказывают тонизирующее и оздоровительное действие, это используется даже в современной медицине (из научно-популярной литературы). Однако надо заметить, что электрические разряды, которые Вы видели, имеют высокую температуру, поэтому долго ловить молнию руками не рекомендуется!

Никола Тесла заложил основы новой цивилизации третьего тысячелетия и его роль нуждается в переоценке. Только будущее даст настоящее объяснение явлению Теслы.

Катушка Тесла представляет собой высокочастотный резонансный трансформатор без ферромагнитного сердечника, с помощью которого можно получить высокое напряжение на вторичной обмотке. Под действием высокого напряжения в воздухе происходит электрический пробой, подобно разряду молнии. Устройство изобретено Николой Теслой, и носит его имя.

По типу коммутирующего элемента первичного контура, катушки Тесла подразделяются на искровые (SGTC – Spark gap Tesla coil), транзисторные (SSTC – Solid state Tesla coil, DRSSTC – Dual resonant solid state Tesla coil). Я буду рассматривать только искровые катушки, являющиеся самыми простыми и распространенными. По способу заряда контурного конденсатора, искровые катушки делятся на 2 типа: ACSGTC – Spark gap Tesla coil, а также DCSGTC – Spark gap Tesla coil. В первом варианте, заряд конденсатора осуществляется переменным напряжением, во втором используется резонансный заряд с подведением постоянного напряжения.


Сама катушка представляет собой конструкцию из двух обмоток и тора. Вторичная обмотка цилиндрическая, наматывается на диэлектрической трубе медным обмоточным проводом, в один слой виток к витку, и имеет обычно 500-1500 витков. Оптимальное соотношение диаметра и длины обмотки равно 1:3,5 – 1:6. Для увеличения электрической и механической прочности, обмотку покрывают эпоксидным клеем или полиуретановым лаком. Обычно размеры вторичной обмотки определяют исходя из мощности источника питания, то есть высоковольтного трансформатора. Определив диаметр обмотки, из оптимального соотношения находят длину. Далее подбирают диаметр обмоточного провода, так чтобы количество витков примерно равнялось общепринятому значению. В качестве диэлектрической трубы обычно применяют канализационные пластиковые трубы, но можно изготовить и самодельную трубу, при помощи листов чертежного ватмана и эпоксидного клея. Здесь и далее речь идет о средних катушках, мощностью от 1 кВт и диаметром вторичной обмотки от 10 см.

На верхний конец трубы вторичной обмотки устанавливают полый проводящий тор, обычно выполненный из алюминиевой гофрированной трубы для отвода горячих газов. В основном диаметр трубы подбирают равным диаметру вторичной обмотки. Диаметр тора обычно составляет 0,5-0,9 от длины вторичной обмотки. Тор имеет электрическую емкость, которая определяется его геометрическими размерами, и выступает в роли конденсатора.

Первичная обмотка располагается у нижнего основания вторичной обмотки, и имеет спиральную плоскую или коническую форму. Обычно состоит из 5-20 витков толстого медного или алюминиевого провода. В обмотке протекают высокочастотные токи, вследствие чего скин-эффект может иметь значительное влияние. Из-за высокой частоты ток распределяется преимущественно в поверхностном слое проводника, тем самым уменьшается эффективная площадь поперечного сечения проводника, что приводит к увеличению активного сопротивления и уменьшению амплитуды электромагнитных колебаний. Поэтому лучшим вариантом для изготовления первичной обмотки будет полая медная трубка, или плоская широкая лента. Над первичной обмоткой по внешнему диаметру иногда устанавливают незамкнутое защитное кольцо (Strike Ring) из того же проводника, и заземляют. Кольцо предназначено для предотвращения попадания разрядов в первичную обмотку. Разрыв необходим для исключения протекания тока по кольцу, иначе магнитное поле, созданное индукционным током, будет ослаблять магнитное поле первичной и вторичной обмотки. От защитного кольца можно отказаться, если заземлить один конец первичной обмотки, при этом попадание разряда не причинит вреда компонентам катушки.

Коэффициент связи между обмотками зависит от их взаимного расположения, чем они ближе, тем больше коэффициент. Для искровых катушек типичное значение коэффициента равно K=0,1-0,3. От него зависит напряжение на вторичной обмотке, чем больше коэффициент связи, тем больше напряжение. Но увеличивать коэффициент связи выше нормы не рекомендуется, так как между обмотками начнут проскакивать разряды, повреждающие вторичную обмотку.


На схеме представлен простейший вариант катушки Тесла типа ACSGTC.
Принцип действия катушки Тесла основан на явлении резонанса двух индуктивно связанных колебательных контуров. Первичный колебательный контур состоит из конденсатора С1, первичной обмотки L1, и коммутируется разрядником, в результате чего образуется замкнутый контур. Вторичный колебательный контур образован вторичной обмоткой L2 и конденсатором С2 (тор обладающий емкостью), нижний конец обмотки обязательно заземляется. При совпадении собственной частоты первичного колебательного контура с частотой вторичного колебательного контура, происходит резкое возрастание амплитуды напряжения и тока во вторичной цепи. При достаточно высоком напряжении происходит электрический пробой воздуха в виде разряда, исходящего из тора. При этом важно понимать, что представляет собой замкнутый вторичный контур. Ток вторичного контура течет по вторичной обмотке L2 и конденсатору С2 (тор), далее по воздуху и земле (так как обмотка заземлена), замкнутый контур можно описать следующим образом: земля-обмотка-тор-разряд-земля. Таким образом, захватывающие электрические разряды представляют собой часть контурного тока. При большом сопротивлении заземления разряды, исходящие из тора будут бить прямо по вторичной обмотке, что не есть хорошо, поэтому нужно делать качественное заземление.

После того как размеры вторичной обмотки и тора определены, можно посчитать собственную частоту колебаний вторичного контура. Здесь надо учитывать, что вторичная обмотка кроме индуктивности обладает некоторой емкостью из-за немалых размеров, которую надо учитывать при расчете, емкость обмотки необходимо сложить с емкостью тора. Далее надо прикинуть параметры катушки L1и конденсатора C1первичного контура, так чтобы собственная частота первичного контура была близка к частоте вторичного контура. Емкость конденсатора первичного контура обычно составляет 25-100 нФ, исходя из этого, рассчитывают количество витков первичной обмотки, в среднем должно получиться 5-20 витков. При изготовлении обмотки необходимо увеличить количество витков, по сравнению с расчетным значением, для последующей настройки катушки в резонанс. Рассчитать все эти параметры можно по стандартным формулам из учебника физики, также в сети есть книги по расчету индуктивности различных катушек. Существуют и специальные программы калькуляторы для расчета всех параметров будущей катушки Тесла.

Настройка осуществляется путем изменения индуктивности первичной обмотки, то есть один конец обмотки подсоединен к схеме, а другой никуда не подключается. Второй контакт выполняют в виде зажима, который можно перекидывать с одного витка на другой, тем самым используется не вся обмотка, а только ее часть, соответственно меняется индуктивность, и собственная частота первичного контура. Настройку выполняют во время предварительных запусков катушки, о резонансе судят по длине выдаваемых разрядов. Существует также метод холодной настройки резонанса при помощи ВЧ генератора и осциллографа или ВЧ вольтметра, при этом катушку запускать не надо. Необходимо взять на заметку, что электрический разряд обладает емкостью, вследствие чего собственная частота вторичного контура может немного уменьшаться во время работы катушки. Заземление также может оказывать небольшое влияние на частоту вторичного контура.

Разрядник является коммутирующим элементом в первичном колебательном контуре. При электрическом пробое разрядника под действием высокого напряжения, в нем образуется дуга, которая замыкает цепь первичного контура, и в нем возникают высокочастотные затухающие колебания, в течение которых напряжение на конденсаторе С1 постепенно уменьшается. После того как дуга гаснет, контурный конденсатор С1 вновь начинает заряжаться от источника питания, при следующем пробое разрядника начинается новый цикл колебаний.

Разрядник подразделяется на два типа: статический и вращающийся. Статический разрядник представляет собой два близко расположенных электрода, расстояние между которыми регулируют так чтобы электрический пробой между ними происходил в то время, когда конденсатор С1 заряжен до наибольшего напряжения, или немного меньше максимума. Ориентировочное расстояние между электродами определяют исходя из электрической прочности воздуха, которая составляет около 3 кВ/мм при стандартных условиях окружающей среды, а также зависит от формы электродов. Для переменного сетевого напряжения, частота срабатываний статического разрядника (BPS – beats per second) составит 100Гц.

Вращающийся разрядник (RSG – Rotary spark gap) выполняется на основе электродвигателя, на вал которого насажен диск с электродами, с каждой стороны диска устанавливаются статические электроды, таким образом, при вращении диска, между статическими электродами будут пролетать все электроды диска. Расстояние между электродами делают минимальным. В таком варианте можно регулировать частоту коммутаций в широких пределах управляя электродвигателем, что дает больше возможностей по настройке и управлению катушкой. Корпус двигателя необходимо заземлить, для защиты обмотки двигателя от пробоя, при попадании высоковольтного разряда.

В качестве контурного конденсатора С1 применяют конденсаторные сборки (MMC – Multi Mini Capacitor) из последовательно и параллельно соединенных высоковольтных высокочастотных конденсаторов. Обычно применяют керамические конденсаторы типа КВИ-3, а также пленочные К78-2. В последнее время намечен переход на бумажные конденсаторы типа К75-25, которые неплохо показали себя в работе. Номинальное напряжение конденсаторной сборки для надежности должно быть в 1,5-2 раза больше амплитудного напряжения источника питания. Для защиты конденсаторов от перенапряжения (высокочастотные импульсы) устанавливают воздушный разрядник параллельно всей сборке. Разрядник может представлять собой два небольших электрода.

В качестве источника питания для зарядки конденсаторов используется высоковольтный трансформатор Т1, или несколько последовательно или параллельно соединенных трансформаторов. В основном начинающие тесластроители используют трансформатор из микроволновой печи (MOT – Microwave Oven Transformer), выходное переменное напряжение которого составляет ~2,2 кВ, мощность около 800 Вт. В зависимости от номинального напряжения контурного конденсатора, МОТы соединяют последовательно от 2 до 4 штук. Применение только одного трансформатора не целесообразно, так как из-за небольшого выходного напряжения зазор в разряднике будет очень малым, итогом будут нестабильные результаты работы катушки. Моты имеют недостатки в виде слабой электропрочности, не рассчитаны для работы в длительном режиме, сильно греются при большой нагрузке, поэтому часто выходят из строя. Более разумно использовать специальные масляные трансформаторы типа ОМ, ОМП, ОМГ, которые имеют выходное напряжение 6,3 кВ, 10 кВ, и мощность 4 кВт, 10 кВт. Можно также изготовить самодельный высоковольтный трансформатор. При работе с высоковольтными трансформаторами не следует забывать о технике безопасности, высокое напряжение опасно для жизни, корпус трансформатора необходимо заземлить. При необходимости последовательно с первичной обмоткой трансформатора можно установить автотрансформатор, для регулировки напряжения зарядки контурного конденсатора. Мощность автотрансформатора должна быть не меньше мощности трансформатора T1.

Дроссель Lд в цепи питания необходим для ограничения тока короткого замыкания трансформатора при пробое разрядника. Чаще всего дроссель находится в цепи вторичной обмотки трансформатора T1. Вследствие высокого напряжения, необходимая индуктивность дросселя может принимать большие значения от единиц до десятков Генри. В таком варианте он должен обладать достаточной электропрочностью. С таким же успехом дроссель можно установить последовательно с первичной обмоткой трансформатора, соответственно здесь не требуется высокая электропрочность, необходимая индуктивность на порядок ниже, и составляет десятки, сотни миллигенри. Диаметр обмоточного провода должен быть не меньше диаметра провода первичной обмотки трансформатора. Индуктивность дросселя рассчитывают из формулы зависимости индуктивного сопротивления от частоты переменного тока.

Фильтр низких частот (ФНЧ) предназначен для исключения проникновения высокочастотных импульсов первичного контура в цепь дросселя и вторичной обмотки трансформатора, то есть для их защиты. Фильтр может быть Г-образным или П-образным. Частоту среза фильтра выбирают на порядок меньше резонансной частоты колебательных контуров катушки, но при этом частота среза должна быть намного больше частоты срабатывания разрядника.


При резонансном заряде контурного конденсатора (тип катушки – DCSGTC), используют постоянное напряжение, в отличии от ACSGTC. Напряжение вторичной обмотки трансформатора T1 выпрямляют с помощью диодного моста и сглаживают конденсатором Св. Емкость конденсатора должна быть на порядок больше емкости контурного конденсатора С1, для уменьшения пульсаций постоянного напряжения. Величина емкости обычно составляет 1-5 мкФ, номинальное напряжение для надежности выбирают в 1,5-2 раза больше амплитудного выпрямленного напряжения. Вместо одного конденсатора можно использовать конденсаторные сборки, желательно не забывая про выравнивающие резисторы при последовательном соединении нескольких конденсаторов.

В качестве диодов моста применяют последовательно соединенные высоковольтные диодные столбы типа КЦ201 и др. Номинальный ток диодных столбов должен быть больше номинального тока вторичной обмотки трансформатора. Обратное напряжение диодных столбов зависит от схемы выпрямления, по соображениям надежности обратное напряжение диодов должно быть в 2 раза больше амплитудного значения напряжения. Возможно изготовление самодельных диодных столбов путем последовательного соединения обычных выпрямительных диодов (например 1N5408, Uобр = 1000 В, Iном = 3 А), с применением выравнивающих резисторов.
Вместо стандартной схемы выпрямления и сглаживания можно собрать удвоитель напряжения из двух диодных столбов и двух конденсаторов.

Принцип работы схемы резонансного заряда основан на явлении самоиндукции дросселя Lд, а также применения диода отсечки VDо. В момент времени, когда конденсатор C1 разряжен, через дроссель начинает течь ток, возрастая по синусоидальному закону, при этом в дросселе накапливается энергия в виде магнитного поля, а конденсатор при этом заряжается, накапливая энергию в виде электрического поля. Напряжение на конденсаторе возрастает до напряжения источника питания, при этом через дроссель течет максимальный ток, и падение напряжения на нем равно нулю. При этом ток не может прекратиться мгновенно, и продолжает течь в том же направлении из-за наличия самоиндукции дросселя. Зарядка конденсатора продолжается до удвоенного значения напряжения источника питания. Диод отсечки необходим для предотвращения перетекания энергии от конденсатора обратно в источник питания, так как между конденсатором и источником питания появляется разность потенциалов равная напряжению источника питания. На самом деле напряжение на конденсаторе не достигает удвоенного значения, из-за наличия падения напряжения на диодном столбе.

Применение резонансного заряда позволяет более эффективно и равномерно передавать энергию на первичный контур, при этом для получения одинакового результата (по длине разряда), для DCSGTC требуется меньшая мощность источника питания (трансформатор Т1), чем для ACSGTC. Разряды приобретают характерный плавный изгиб, вследствие стабильного питающего напряжения, в отличии от ACSGTC, где очередное сближение электродов в RSG может приходиться по времени на любой участок синусоидального напряжения, включая попадание на нулевое или низкое напряжение и как следствие переменная длина разряда (рваный разряд).

Ниже на картинке представлены формулы для расчета параметров катушки Тесла:

Предлагаю ознакомиться с моим опытом постройки .

Трансформатор, увеличивающий напряжение и частоту во много раз, называется трансформатором Тесла. Энергосберегающие и люминесцентные лампы, кинескопы старых телевизоров, зарядка аккумуляторов на расстоянии и многое другое создано благодаря принципу работы этого устройства. Не будем исключать его использование в развлекательных целях, ведь «трансформатор Тесла» способен создавать красивые фиолетовые разряды – стримеры, напоминающие молнию (рис. 1). В процессе работы образуется электромагнитное поле, способное воздействовать на электронные приборы и даже на организм человека, а при разрядах в воздухе происходит химический процесс с выделением озона. Чтобы сделать трансформатор Тесла своими руками, необязательно иметь широкие познания в области электроники, достаточно следовать этой статье.

Составные части и принцип работы

Все трансформаторы Тесла ввиду похожего принципа работы состоят из одинаковых блоков:

  1. Источник питания.
  2. Первичный контур.

Источник питания обеспечивает первичный контур напряжением необходимой величины и типа. Первичный контур создаёт колебания высокой частоты, генерирующие во вторичном контуре резонансные колебания. В результате на вторичной обмотке образуется ток большого напряжения и частоты, который стремится создать электрическую цепь через воздух - образуется стример.

От выбора первичного контура зависит тип катушки Тесла, источник питания и размер стримера. Остановимся на полупроводником типе. Он отличается простой схемой с доступными деталями, и маленьким питающим напряжением.

Подбор материалов и деталей

Произведём поиск и подбор деталей к каждому вышеперечисленному узлу конструкции:


После намотки изолируем вторичную катушку краской, лаком или другим диэлектриком. Это предотвратит попадание в неё стримера.

Терминал – дополнительная ёмкость вторичного контура, подключённая последовательно. При малых стримерах в нем нет необходимости. Достаточно вывести конец катушки на 0,5–5 см вверх.

После того, как собрали все необходимые детали для катушки Тесла, приступаем к сборке конструкции своими руками.

Конструкция и сборка

Сборку делаем по простейшей схеме на рисунке 4.

Отдельно устанавливаем источник питания. Детали можно собрать навесным монтажом, главное исключить замыкание между контактами.

При подключении транзистора важно не перепутать контакты (рис. 5).

Для этого сверяемся со схемой. Плотно прикручиваем радиатор к корпусу транзистора.

Собирайте схему на диэлектрической подложке: кусок фанеры, пластиковый поднос, деревянная коробка и др. Отделяем схему от катушек диэлектрической пластиной или доской, с миниатюрным отверстием для проводов.

Закрепляем первичную обмотку так, чтобы предотвратить падение и касание со вторичной обмоткой. В центре первичной обмотки оставляем место для вторичной катушки, с учётом того, что оптимальное расстояние между ними 1 см. Каркас использовать необязательно – достаточно надёжного крепления.

Устанавливаем и закрепляем вторичную обмотку. Делаем необходимые соединения согласно схеме. Посмотреть на работу изготовленного трансформатора Тесла можно на видео представленном ниже.

Включение, проверка и регулировка

Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты:

  1. Выставляем переменный резистор в среднее положение. При подаче питания, убеждаемся в отсутствии повреждений.
  2. Визуально проверяем наличие стримера. Если он отсутствует, подносим к вторичной катушке люминесцентную лампочку или лампу накаливания. Свечение лампы подтверждает работоспособность «трансформатора Тесла» и наличие электромагнитного поля.
  3. Если устройство не работает, в первую очередь меняем местами выводы первичной катушки, а уже потом проверяем транзистор на пробой.
  4. При первом включении следите за температурой транзистора, при необходимости подключите дополнительное охлаждение.

Отличительной особенностью мощного трансформатора Тесла являются большое напряжение, большие габариты устройства и способ получения резонансных колебаний. Немного расскажем о том, как работает и как сделать трансформатор Тесла искрового типа.

Первичный контур работает на переменном напряжении. При включении, происходит заряд конденсатора. Как только конденсатор заряжается по максимуму, происходит пробой разрядника – устройства из двух проводников с искровым промежутком, наполненным воздухом или газом. После пробоя, образуется последовательная цепь из конденсатора и первичной катушки, называемая LC контуром. Именно этот контур создаёт высокочастотные колебания, которые создают во вторичной цепи резонансные колебания и огромное напряжение (рис. 6).

При наличии необходимых деталей, мощный трансформатор Тесла можно собрать своими руками даже в домашних условиях. Для этого достаточно внести изменения в маломощную схему:

  1. Увеличить диаметры катушек и сечение провода в 1,1 – 2,5 раза.
  2. Добавить терминал в форме тороида.
  3. Поменять источник постоянного напряжения на переменный с высоким повышающим коэффициентом, выдающим напряжение 3–5 кВ.
  4. Изменить первичный контур согласно схеме на рисунке 6.
  5. Добавить надёжное заземление.

Искровые трансформаторы Тесла могут достигать мощности до 4,5 кВт, следовательно, создавать стримеры больших размеров. Наилучший эффект получается при достижении одинаковых показателей частоты обоих контуров. Реализовать это можно расчётом деталей в специальных программах – vsTesla, inca и другие. Скачать одну из русскоязычных программ можно по ссылке: http://ntesla.at.ua/_fr/1/6977608.zip .

Здравствуйте. Сегодня я расскажу про миниатюрную катушку (трансформатор) Тесла.
Сразу скажу, что игрушка крайне интересная. Я сам вынашивал планы по её сборке, но оказывается это дело уже поставлено на поток.
В обзоре тестирование, различные опыты-эксперименты, а также небольшая доработка.
Так что прошу…

Насчет Николы Теслы существуют разные мнения. Для кого-то это чуть ли не бог электричества, покоритель свободной энергии и изобретатель вечного двигателя. Другие же считают его великим мистификатором, умелым иллюзионистом и любителем сенсаций. И ту, и другую позицию можно подвергнуть сомнению, однако отрицать огромный вклад Теслы в науку никак нельзя. Ведь он изобрёл такие вещи, без которых невозможно представить себе наше сегодняшнее существование, например: переменный ток, генератор переменного тока, асинхронный электродвигатель, радио (да, да именно Н.Тесла первый изобрёл радио, а не Попов и Маркони), дистанционное управление и др.
Одним из его изобретений был резонансный трансформатор, производящий высокое напряжение высокой частоты. Этот трансформатор носит имя создателя - Николы Теслы.
Простейший трансформатор Тесла состоит из двух катушек - первичной и вторичной, а также электрической схемы, создающей высокочастотные колебания.
Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. В отличие от обычных трансформаторов, здесь нет ферромагнитного сердечника. Таким образом взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником.
В оригинале в схеме генератора использовался газовый разрядник. Сейчас чаще всего используют так называемый качер Бровина.
Качер Бровина - разновидность генератора на одном транзисторе, якобы работающего в нештатном для обычных транзисторов режиме, и демонстрирующая таинственные свойства, восходящие к исследованиям Тесла и не вписывающиеся в современные теории электромагнетизма.
По видимому, качер представляет собой полупроводниковый разрядник (по аналогии с разрядником Теслы), в котором электрический разряд тока проходит в кристалле транзистора без образования плазмы (электрической дуги). При этом кристалл транзистора после его пробоя полностью восстанавливается (т.к. это обратимый лавинный пробой, в отличие от необратимого для полупроводника теплового пробоя). Но в доказательство этого режима работы транзистора в качере приводятся лишь косвенные утверждения: никто кроме самого Бровина работу транзистора в качере детально не исследовал, и это только его предположения. Например, в качестве подтверждения «качерного» режима Бровин приводит следующий факт: какой полярностью к качеру не подключай осциллограф, полярность импульсов, которые он показывает, всё равно положительная

Хватит слов, пора переходить к герою обзора.

Упаковка самая аскетическая - вспененный полиэтилен и скотч. Фото не делал, но процесс распаковки есть в видеоролике в конце обзора.

Комплектация:

Комплект состоит из:
- блока питания на 24В 2А;
- переходника на евровилку;
- 2-х неоновых лампочек;
- катушки (трансформатора) Тесла с генератором.



Трансформатор Тесла:

Размеры всего изделия весьма скромные: 50х50х70 мм.






От оригинальной катушки Тесла есть несколько отличий: первичная (с малым количеством витков) обмотка должна находится снаружи вторичной, а не наоборот, как здесь. Также вторичная обмотка должна содержать достаточно большое количество витков, как минимум 1000, здесь же всего витков около 250.
Схема достаточно простая: резистор, конденсатор, светодиод, транзистор и сам трансформатор Тесла.
Это и есть слегка модифицированный качер Бровина. В оригинале у качера Бровина установлено 2 резистора от базы транзистора. Здесь один из резисторов заменён на светодиод включенный в обратном смещении.

Тестирование:

Включаем и наблюдаем свечение высоковольтного разряда на свободном контакте катушки Тесла.
Также можем видеть свечение неоновых ламп из комплекта, и газоразрядной «энергосберегайки». Да, для тех, кто не в курсе, лампы светятся просто так, без подключения к чему либо, просто вблизи катушки.


Свечение можно наблюдать даже у неисправной лампы накаливания
Правда в процессе экспериментирования, колба лампы лопнула.
Высоковольтный разряд без труда поджигает спичку:
Спичка легко поджигается и с обратной стороны:

Для снятия осциллограммы тока потребления, я в разрыв цепи питания установил 2-х ваттный резистор сопротивлением 4,7 Ом. Вот что получилось:

На первом скриншоте трансформатор работает без нагрузки, на втором поднесена энергосберегающая лампа. Видно, что общий ток потребления не меняется, что не скажешь о частоте колебаний.
Маркером V2 я отметил нулевой потенциал и среднюю точку переменной составляющей, итого получилось 1,7 вольта на резисторе 4,7 Ом, т.е. средний ток потребления составляет
0,36А. А потребляемая мощность около 8,5Вт.

Доработка:

Явный недостаток конструкции - очень маленький радиатор. Несколько минут работы прибора достаточно, чтобы нагреть радиатор до 90 градусов.
Для улучшения ситуации был применён бОльший радиатор от видеокарты. Транзистор был перемещён вниз, а светодиод наверх платы.
С этим радиатором максимальная температура упала до 60-65 градусов.

Видеоверсия обзора:

Видеоверсия содержит распаковку, опыты с разными лампами, поджигание спичек, бумаги, прожигание стекла, а также «электронные качели». Приятного просмотра.

Итоги:

Начну с минусов: неверно выбран размер радиатора - он слишком мал, поэтому включать трансформатор можно буквально на несколько минут, иначе можно сжечь транзистор. Либо нужно сразу увеличить радиатор.
Плюсы: всё остальное, одни сплошные плюсы, от «Вау»-эффекта, до пробуждения интереса к физике у детей.
К покупке рекомендую однозначно.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Не так давно в ассортименте различных магазинов появились так называемые плазменные лампы, испускающие молнии по поверхности стеклянного шара. Эти светильники быстро обрели популярность, но мало кто знает, что эти приборы изобрёл Никола Тесла в 1910-х годах прошлого века. Для начала необходимо разобраться с внутренним устройством этого удивительного изобретения. На самом деле это обычный трансформатор особого типа. Он использует в своей работе резонанс, возникающий в так называемых стоячих магнитных волнах. На первичной обмотке совсем немного витков, он генерирует колеблющиеся искры, собирая энергию в конденсатор, а поэтому искрение происходит в определенный период времени. Вторичная обмотка работает на базе прямоточной катушки из проводов. Частота колебания пары контуров должна совпасть, что приведёт к появлению крайне высокого переменного тока большой частоты между двумя концами катушки на вторичной обмотке. Это и вызывает визуализацию в виде тех самых фиолетовых молний.


Резонансный трансформатор часто сравнивают с обычным маятником, где частота и амплитуда будут напрямую зависимы от того, с каким усилием толкается вся система. Раскачку можно делать при наличии свободных колебаний, что многократно повышает длину хода, а также увеличивает время полного угасания. С катушкой здесь происходит то же самое. Качается вторичная обмотка, а раскачивает её генератор. Синхронизация обеспечивается первичным контуром и генератором одновременно, что позволяет точно настроить систему в зависимости от поставленной задачи. В данный момент большинство людей знает это только в виде игрушки. Но на самом деле, эта система имеет реальное применение.

Использование катушки Тесла в реальности

Выходные значения напряжения часто может достигать невероятных значений в несколько миллионов вольт. Это уникальное явление в мире электричества, ведь подобные высокие токи редко характеризуются столь длительными волнами. Электрическая прочность воздушного пространства пробивается на огромное расстояние стабильными разрядами, а при большой мощности генератора длина может достигать многих метров. Подобные демонстрационные комнаты с этим чудом физики нашей планеты часто устанавливаются во многих университетах мира. Эти явления нашли отображение в знаменитой игрушке. Когда мы прикасаемся к шару, то молнии тянутся к нашим рукам, как к объекту со сравнительно большой проводимостью. Наша кровь и прочие жидкости организма переполнены солями и металлами, что делает нас отличным проводником.


Ещё в начале прошлого века данная схема использовалась для передачи сигналов на огромные расстояния, ведь у разрядов имеется также невидимая часть. Люди стали пытаться использовать их для передачи радиоволн на небольшие расстояния для передачи дистанционного управления, но такое применение было слишком опасным для здоровья людей. Затем проводились многочисленные опыты в сфере медицины. Так называемая дарсонвализация используется до сих пор, а сами приборы являются ничем иным, как генератором Тесла в самом маленьком размере. Ток щекочет кожу, но не проникает глубоко в тело. Тонизирующий эффект от такой обработки быстро нашёл применение в реальности, он используется для лечения кожных заболеваний, стимулирует рост волос, позволяет шлифовать шрамы, уменьшая размеры узелков.

Именно данный тип генераторов поджигает газоразрядные лампы. Вакуумные системы тестируются при помощи этих лучей на наличие трещин в корпусах. Молния обязательно будет тянуться в сторону дефекта.

Опасны ли лампы Тесла для людей?

Можно однозначно говорить, что опасность имеется, поэтому нужно соблюдать прилагаемую инструкцию на 100%. Нельзя браться за руки и трогать стекло лампы, а также пытаться прикасаться к шару мокрыми руками. Особенно мы настоятельно не рекомендуем изготавливать подобные схемы без должного опыта в домашних условиях. Вы можете вывести из строя многочисленные электроприборы в вашем доме, сжечь проводку. Но это не самые худшие последствия. Трансформаторы Тесла с напряжением в миллионы вольт при ошибке способны убить человека одним касанием. Эффект схож с попаданием молнии. Поэтому будьте крайне осторожны, особенно берегите детей. До 12 лет покупка подобных ламп настоятельно не рекомендуется. Также покупайте эти приборы только от известных производителей. Копии от китайских безымянных компаний часто бьют током до такой степени сильно, что на руках могут загораться волосы и рукава одежды, а также оплавляются ногти. Игрушка может принести большие неприятности, будьте бдительны.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: