Как охладить компьютер от перегрева программы. Как подручными средствами охладить пк мастер-класс

Лето стремительно вступило в свои права; столбик термометра ползет вверх, и все чаще приходится задумываться о том, как обеспечить комфортную температуру. Поверьте: для компьютеров проблема борьбы с жарой не менее актуальна, чем для их пользователей. Даже если условия в помещении вполне нормальные (20 - 22°С), температура в системном блоке достигает 30–32°С. И это в лучшем случае. Чем жарче на улице и в квартирах, тем острее вопрос защиты от перегрева и тем пристальнее внимание к системам охлаждения системного блока и его компонентов.

Чтобы грамотно решить проблему, необходимо хотя бы в общих чертах представлять, зачем вообще нужны компьютерам системы охлаждения, почему системные блоки перегреваются и как обезопасить «вычислительного друга» от теплового удара. В этой статье вы не найдете длинного перечня моделей кулеров, но, прочитав ее, сами сможете выбрать подходящие компоненты системы охлаждения ПК и грамотно подойти к выбору нового корпуса.

Почему он греется

Причина тривиальна: как любой электроприбор, компьютер рассеивает часть (порой весьма значительную) потребляемой электроэнергии в виде тепла – например, процессор переводит в тепло почти всю использованную энергию. Чем больше ее нужно системному блоку, тем сильнее нагреваются его компоненты. Если тепло вовремя не отводить, это может привести к самым неприятным результатам (см. «Последствия перегрева»). Особенно актуальна проблема теплоотведения и охлаждения для современных моделей процессоров (как центральных, так и графических), устанавливающих все новые рекорды производительности (а нередко и тепловыделения).

Каждый компонент ПК, рассеивающий много тепла, оснащается охлаждающим устройством. Как правило, в таких устройствах присутствуют металлический радиатор и вентилятор – именно из этих компонентов состоит типичный кулер. Важен также термоинтерфейс между ним и нагревающимся компонентом – обычно это термопаста (смесь веществ с хорошей теплопроводностью), обеспечивающая эффективную передачу тепла к радиатору кулера.

Прогресс в области систем охлаждения, благодаря которому появились такие технологические новинки, как термотрубки, обеспечил создателям компонентов для персональных компьютеров новые возможности, позволив отказаться от шумных кулеров. Некоторые компьютеры оснащаются водяными системами охлаждения – они имеют свои достоинства и недостатки. Обо всем этом рассказывается далее.

Рост тепловыделения ПК

Главная причина, по которой компьютеры выделяют все больше и больше тепла, состоит в том, что повышается их вычислительная мощность. Наиболее существенны следующие факторы:

  • рост тактовых частот процессора, чипсета, шины памяти и прочих шин;
  • рост числа транзисторов и ячеек памяти в чипах ПК;
  • увеличение мощности, потребляемой узлами ПК.

Чем мощнее компьютер, тем больше электричества он «съедает» – следовательно, неизбежен рост тепловыделения. Несмотря на применение изощренных технологических процессов при производстве чипов, их потребляемая мощность все равно растет, увеличивая количество тепла, рассеиваемого в корпусе ПК. Кроме того, возрастает площадь плат видеокарт (например, из­за того, что необходимо разместить больше микросхем памяти). Результат – рост аэродинамического сопротивления корпуса: громоздкая плата просто перекрывает доступ охлаждающего воздуха к процессору и блоку питания. Особенно актуальна эта проблема для ПК в маленьких корпусах, где расстояние между видеокартой и «корзиной» для HDD составляет 2–3 см, – а ведь в этом пространстве еще проложены шлейфы приводов и прочие кабели... Микросхемы оперативной памяти тоже становятся все «прожорливее», а современные ОС требуют все большего ОЗУ. Например, в Windows 7 для него рекомендуется 4 Гб – таким образом, рассеивается несколько десятков ватт тепла, что дополнительно усугубляет ситуацию с тепловыделением. Микросхема системной логики на материнской плате тоже является весьма «горячим» компонентом.

УЯЗВИМОСТЬ ЖЕСТКИХ ДИСКОВ

Внутри корпуса жесткого диска над поверхностью вращающихся пластин скользят подвижные магнитные головки, управляемые высокоточной механикой. Они осуществляют запись и чтение данных. При нагревании материалы, из которых сделаны компоненты диска, расширяются. В рабочем диапазоне температур механика и электроника вполне справляются с тепловым расширением. Однако при перегреве оно превышает допустимые пределы, и головки жесткого диска могут «промахиваться», записывая данные не там, где нужно, пока компьютер не будет выключен. А когда его снова включат, остывший жесткий диск не сможет найти данные, записанные в перегретом состоянии. В подобном случае информацию удается спасти только при помощи сложного и дорогого спецоборудования. Если температура превышает 45°С, для охлаждения жесткого диска рекомендуется установить дополнительный вентилятор.

Налицо парадокс: тепловая нагрузка в современных корпусах растет высокими темпами, а их конструкция почти не меняется: производители берут за основу рекомендованный Intel дизайн почти 10­летней давности. Модели, приспособленные к интенсивному тепловыделению, встречаются нечасто, а малошумные – и того реже.

Последствия перегрева

При избытке тепла компьютер в лучшем случае начнет тормозить и зависать, а в худшем – один или несколько компонентов выйдут из строя. Высокие температуры очень вредны для «здоровья» элементной базы (микросхем, конденсаторов и пр.), особенно для жесткого диска, перегрев которого чреват потерей данных.

ПРИМЕРНЫЕ ПАРАМЕТРЫ ТЕПЛОВЫДЕЛЕНИЯ

Примерные параметры тепловыделения компонентов среднестатистического системного блока компьютера (при высокой вычислительной нагрузке). Основными источниками тепла являются материнская плата, центральный процессор и графический процессор видеокарты (на их долю приходится более половины рассеиваемого тепла).

Емкость современных HDD позволяет хранить на них обширные коллекции музыки и видео, рабочие документы, цифровые фотоальбомы, игры и многое другое. Диски становятся все компактнее и быстрее, но за это приходится расплачиваться большей плотностью записи данных, хрупкостью конструкции, а значит, и уязвимостью начинки. Допуски при производстве емких накопителей измеряются микронами, так что малейший «шаг в сторону» выводит диск из строя. Потому HDD столь чувствительны к внешним воздействиям. Если диску приходится работать в неоптимальных условиях (например, с перегревом), вероятность потери записанных данных резко возрастает.

Охлаждение ПК: азы

Если температура воздуха в системном блоке держится на уровне 36°С или выше, а температура процессора – более 60°С (либо жесткий диск постоянно нагревается до 45°С), пора принимать меры по улучшению охлаждения.

Но прежде чем бежать в магазин за новым кулером, примите во внимание несколько моментов. Не исключено, что проблему перегрева можно решить более простым способом. Например, системный блок должен располагаться так, чтобы имелся свободный доступ воздуха ко всем вентиляционным отверстиям. Расстояние, на которое его тыльная часть отстоит от стены или мебели, должно быть не меньше, чем два диаметра вытяжного вентилятора. Иначе возрастает сопротивление оттоку воздуха, а главное – нагретый воздух дольше остается рядом с вентиляционными отверстиями, так что значительная его часть вновь попадает в системный блок. Если он установлен неправильно, от перегрева не спасет даже самый мощный кулер (эффективность работы которого определяется разностью между его температурой и температурой охлаждающего радиатор воздуха).

КУЛЕР, ОСНОВАННЫЙ НА ЭФФЕКТЕ ПЕЛЬТЬЕ

Одна из новейших моделей, в которой использован эффект Пельтье. Обычно в таких кулерах представлен полный набор последних технологических достижений: ТЭМ, термотрубки, вентиляторы с продвинутой аэродинамикой и эффектный дизайн. Результат впечатляющий; хватило бы места в системном блоке…

Максимально эффективное охлаждение достигается при равенстве температур воздуха в системном блоке и в помещении, где он находится. Единственный способ получить такой результат – обеспечить эффективную вентиляцию. Для этого используются кулеры всевозможных конструкций.

В стандартном современном персональном компьютере обычно устанавливается несколько кулеров:

  • в блоке питания;
  • на центральном процессоре;
  • на графическом процессоре (если в компьютере имеется дискретная видеоплата).

В отдельных случаях применяются дополнительные вентиляторы:

  • для микросхем системной логики, расположенных на материнской плате;
  • для жестких дисков;
  • для корпуса ПК.

Эффективность охлаждения

Выбирая корпус для системного блока ПК, каждый из пользователей руководствуется собственными критериями. Например, моддерам требуется оригинальное дизайнерское решение либо возможность переделки для воплощения оного. Оверклокерам нужен корпус, в котором комфортно почувствует себя до предела разогнанный процессор, видеокарта, ОЗУ (список можно продолжать). И при этом все, конечно, хотят, чтобы системный блок был тихим и небольшим по размеру.

Однако навороченный ПК может выделять до 500 Вт тепла (см. таблицу ниже). Осуществимы ли пожелания с точки зрения законов физики?

СКОЛЬКО ТЕПЛА ВЫДЕЛЯЕТ КОМПЬЮТЕР

Есть несколько способов измерить тепловыделение.

1. По значениям потребляемой мощности, указанным в документации к компонентам ПК.

  • Достоинства: доступность, простота.
  • Недостатки: высокая погрешность и как следствие – завышенные требования к системе охлаждения.

2. С помощью сайтов, предоставляющих сервис для расчета тепловыделения (и потребляемой мощности), – например, www.emacs.ru/calc.

  • Достоинства: не придется рыться в мануалах или путешествовать по сайтам производителей – нужные данные имеются в базах предлагаемых сервисов.
  • Недостатки: составители баз не поспевают за производителями узлов, поэтому базы нередко содержат недостоверные данные.

3. По значениям потребляемой узлами мощности и коэффициентам тепловыделения, найденным в документации или измеренным самостоятельно. Этот способ – для профессионалов либо больших энтузиастов оптимизации системы охлаждения.

  • Достоинства: дает самые точные результаты и позволяет наиболее эффективно оптимизировать работу ПК.
  • Недостатки: чтобы использовать данный способ, необходимы серьезные знания и немалый опыт.

Пути решения

Главный принцип: чтобы отвести тепло, необходимо пропустить через системный блок определенное количество воздуха. Причем его объем должен быть тем больше, чем жарче в помещении и чем сильнее перегрев.

Простой установкой дополнительных вентиляторов проблему не решить. Ведь чем они многочисленнее, мощнее и «оборотистее», тем «звучнее» ПК. Причем мало того, что шумят двигатели и лопасти вентиляторов, – вследствие вибраций шумит весь системный блок (особенно часто это бывает при некачественной сборке и использовании дешевых корпусов). Для исправления такой ситуации рекомендуется применять низкооборотные вентиляторы большого диаметра.

Чтобы можно было добиться эффективного охлаждения, не используя шумные вентиляторы, системный блок должен иметь низкое сопротивление для воздуха, который через него проходит (на профессиональном языке это называется аэродинамическим сопротивлением). Говоря попросту – если воздух с трудом «пролезает» сквозь тесное пространство, забитое кабелями и компонентами, приходится ставить вентиляторы с большим избыточным давлением, а они неизбежно создают сильный шум. Другая проблема – пыль: чем больше воздуха надо прокачивать, тем чаще требуется очищать внутренность корпуса (об этом поговорим отдельно).

Аэродинамическое сопротивление

Для оптимального охлаждения всегда желательно использовать большой корпус. Только так можно добиться комфортной работы без шума и перегрева даже при аномальной (свыше 40°С) жаре. Маленький корпус уместен лишь в том случае, если компьютер имеет низкое тепловыделение либо используется водяное охлаждение.

Впрочем, для минимизации шума вовсе не обязательно собирать ПК с воздушным охлаждением в морском контейнере или в холодильнике. Достаточно учесть рекомендации специалистов. Так, свободное сечение в любом разрезе корпуса должно быть в 2–5 раз больше проходного сечения вытяжных вентиляторов. Это также относится и к отверстиям для подачи воздуха.

КУЛЕР НА ТЕРМОТРУБКАХ

Кулеры на термотрубках «молчаливы» и позволяют охлаждать даже весьма горячие компоненты ПК, такие как графические процессоры видеокарт. Однако нужно непременно учитывать специфические особенности этих охлаждающих систем.

Гибридные системы включают, наряду с термотрубками и радиаторами, обычные вентиляторы. Но присутствие термотрубок, облегчающих отвод тепла, позволяет обойтись вентилятором меньших размеров либо использовать низкооборотные, а значит, не столь шумные модели.

Для того чтобы снизить аэродинамическое сопротивление, нужно:

  • обеспечить в корпусе достаточно свободного места для потоков воздуха (оно должно быть в несколько раз больше суммарного сечения вытяжных вентиляторов);
  • аккуратно уложить кабели внутри системного блока, используя стяжки;
  • в месте подачи воздуха в корпус установить фильтр, задерживающий пыль, но не оказывающий сильного сопротивления воздушному потоку;
  • фильтр следует регулярно чистить.

Соблюдение нехитрых правил позволит установить низкооборотные вытяжные вентиляторы. Как уже говорилось, корпус должен обеспечивать подачу холодного воздуха из помещения, где стоит ПК, ко всем «горячим» компонентам без больших энергетических затрат (т.е. минимальным числом вентиляторов). Объем воздуха должен быть достаточным, чтобы его температура на выходе из корпуса не оказалась слишком высокой: для эффективной теплоотдачи компонентов ПК разность температур воздуха на входе и на выходе из системного блока не должна превышать нескольких градусов.

ВАРИАНТЫ КОМПОНОВКИ ВЕНТИЛЯТОРОВ И ЭЛЕМЕНТОВ СИСТЕМНОГО БЛОКА, ОБЕСПЕЧИВАЮЩИЕ ЭФФЕКТИВНОЕ ОХЛАЖДЕНИЕ ПК

Вот одна из концепций построения системы воздушного охлаждения:

  • забор воздуха осуществляется внизу и спереди, в «холодной» зоне;
  • вывод воздуха производится вверху и сзади, через блок питания. Это соответствует естественному движению нагретого воздуха вверх;
  • при необходимости устанавливается дополнительный вытяжной вентилятор с автоматической регулировкой, расположенный рядом с БП;
  • обеспечивается дополнительный забор воздуха для видеокарты через заглушку PCI­E;
  • обеспечивается слабое вентилирование отсеков 3" и 5" дисков за счет слегка отогнутых заглушек незанятых отсеков;
  • важно пустить основной поток воздуха через самые «горячие» компоненты;
  • суммарную площадь заборных отверстий желательно довести до удвоенной площади вентиляторов (больше не требуется, поскольку эффекта это не даст, а накопление пыли увеличится).

В соответствии с данными рекомендациями можно дорабатывать корпуса самостоятельно (интересно, но хлопотно) либо при покупке выбирать соответствующие модели. Примерные варианты организации потоков воздуха через системный блок приводятся выше.

«Правильный» вентилятор

Если системный блок слабо «сопротивляется» потоку вдуваемого воздуха, можно использовать любой вентилятор, лишь бы он давал достаточный для охлаждения поток (об этом можно узнать из его паспорта, а также пользуясь онлайн­калькуляторами). Другое дело, если сопротивление воздушному потоку значительно – именно так обстоит дело с вентиляторами, монтируемыми в плотно «заселенные» корпуса, на радиаторы и в отверстия, забранные перфорацией.

Если вы решили самостоятельно заменить вышедший из строя вентилятор в корпусе или на кулере, устанавливайте такой, который обладает не меньшими значениями расхода и избыточного давления воздуха (см. паспорт). Если соответствующей информации нет, использовать подобный вентилятор в ответственных узлах (например, для охлаждения процессора) не рекомендуется.

Если уровень шума не слишком важен, можно устанавливать «оборотистые» вентиляторы большего диаметра. Более «толстые» модели позволяют снижать уровень шума, одновременно повышая давление воздуха.

В любом случае обращайте внимание на зазор между лопастями и ободом вентилятора: он не должен быть большим (оптимальная величина исчисляется десятыми долями миллиметра). Если расстояние между лопастями и ободом больше 2 мм, вентилятор окажется малоэффективным.

Воздух или вода?

Довольно широко распространено мнение, согласно которому водяные системы намного действеннее и тише обычных воздушных. Так ли это на самом деле? Действительно, теплоемкость у воды вдвое, а плотность – в 830 раз выше, чем у воздуха. Это значит, что равный объем воды способен отвести в 1658 раз больше тепла.

Однако с шумом все не так просто. Ведь теплоноситель (вода) в итоге отдает тепло все тому же «забортному» воздуху, и водяные радиаторы (за исключением огромных конструкций) оснащены такими же вентиляторами – их шум добавляется к шуму водяного насоса. Поэтому выигрыш, если он есть, не так уж велик.

Конструкция сильно усложняется, когда необходимо охладить несколько компонентов потоком воды, пропорциональным их тепловыделению. Не считая разветвленных трубок, приходится применять сложные регулирующие приборы (простыми тройниками и крестовинами не обойдешься). Альтернативный вариант – использовать конструкцию с раз и навсегда отрегулированными на заводе потоками; но в этом случае пользователь лишен возможности существенно изменить конфигурацию ПК.

Пыль и борьба с ней

Вследствие перепадов скоростей системные блоки компьютеров становятся настоящими пылесборниками. Скорость воздуха, идущего через входные отверстия, многократно превышает скорость потоков внутри корпуса. Кроме того, воздушные потоки часто меняют направление, огибая компоненты ПК. Поэтому большинство (до 70%) приносимой извне пыли оседает внутри корпуса; необходимо хотя бы раз в год производить чистку.

Впрочем, пыль может стать вашим «союзником» в борьбе за повышение эффективности системы охлаждения. Ведь активное ее оседание наблюдается как раз в тех местах, где воздушные потоки распределяются не оптимальным образом.

Воздушные фильтры

Волокнистые фильтры перехватывают более 70% пыли, что позволяет чистить корпус значительно реже. Зачастую в корпуса современных ПК устанавливают несколько вытяжных вентиляторов диаметром 120 мм, при этом воздух поступает в корпус через множество входных отверстий, рассредоточенных по всей конструкции, – их суммарная площадь много меньше площади вентиляторов. Устанавливать фильтр в такой корпус без доработки бессмысленно. Профессионалы дают здесь ряд рекомендаций:

  • входные отверстия для забора охлаждающего воздуха должны быть расположены как можно ближе к его основанию;
  • точки входа и выхода воздуха, пути его прохождения должны быть организованы так, чтобы воздушные потоки «омывали» наиболее нагретые элементы ПК;
  • площадь отверстий для забора воздуха должна в 2–5 раз превышать площадь вытяжных вентиляторов.

Кулеры на элементах Пельтье

Элементы Пельтье – или, как их еще называют, термоэлектрические модули (ТЭМ), работающие на принципе эффекта Пельтье, – выпускаются в промышленных масштабах уже много лет. Их встраивают в автомобильные холодильники, охладители для пива, промышленные кулеры для охлаждения процессоров. Существуют модели и для ПК, хотя встречаются они еще довольно редко.

Сначала – о принципе работы. Как нетрудно догадаться, эффект Пельтье открыт французом Жаном­-Шарлем Пельтье; случилось это в 1834 году. Охлаждающий модуль на основе данного эффекта включает множество последовательно соединенных полупроводниковых элементов n­ и p­типов. При прохождении постоянного тока через такое соединение одна половина p-n­контактов будет нагреваться, другая – охлаждаться.

Эти полупроводниковые элементы ориентированы так, чтобы нагревающиеся контакты выходили на одну сторону, а охлаждающиеся – на другую. Получается пластинка, которую с обеих сторон покрывают керамическим материалом. Если подать на такой модуль достаточно сильный ток, разность температур между сторонами мо жет достигать нескольких десятков градусов.

Можно сказать, что ТЭМ – своего рода «тепловой насос», который, затрачивая энергию внешнего источника питания, перекачивает выделяемое тепло от источника (например, процессора) к теплообменнику – радиатору, участвуя таким образом в процессе охлаждения.

Чтобы эффективно отводить тепло от мощного процессора, приходится использовать ТЭМ из 100–200 элементов (которые, кстати, довольно хрупки); поэтому ТЭМ оснащен дополнительной медной контактной пластиной, что увеличивает размер устройства и требует нанесения дополнительных слоев термопасты.

Это снижает эффективность теплоотведения. Проблема частично решается заменой термопасты пайкой, но в доступных на рынке моделях такой способ применяется редко. Заметим, что энергопотребление самого ТЭМ достаточно велико и сопоставимо с количеством отводимого тепла (примерно треть используемой ТЭМ энергии также превращается в тепло).

Другая трудность, возникающая при использовании ТЭМ в кулерах, – необходимость точного регулирования температуры модуля; оно обеспечивается применением специальных плат с контроллерами. Это удорожает кулер, к тому же плата занимает дополнительное место в системном блоке. Если температуру не регулировать, она может опуститься до отрицательных значений; возможно также образование конденсата, что недопустимо для электронных компонентов компьютера.

Итак, качественные кулеры на основе ТЭМ дороги (от 2,5 тыс. руб.), сложны, громоздки и не так эффективны, как можно подумать, судя по их размерам. Единственная область, в которой такие кулеры незаменимы, – охлаждение промышленных компьютеров, работающих в жарких (выше 50°С) условиях; однако к теме нашей статьи это не относится.

Термоинтерфейс и термопаста

Как уже говорилось, составной частью любой охлаждающей системы (в том числе компьютерного кулера) является термоинтерфейс – компонент, через который осуществляется термоконтакт между тепловыделяющим и теплоотводящим устройствами. Выступающая в этой роли термопаста обеспечивает эффективный перенос тепла между, например, процессором и кулером.

Зачем нужна теплопроводящая паста

Если радиатор кулера неплотно прилегает к охлаждаемому чипу, эффективность работы всей охлаждающей системы сразу снижается (воздух – хороший теплоизолятор). Сделать поверхность радиатора ровной и плоской (для идеального контакта с охлаждаемым устройством) весьма трудно, да и недешево. Здесь и приходит на помощь термопаста, заполняющая неровности на контактирующих поверхностях и тем самым значительно повышающая эффективность теплопереноса между ними.

Важно, чтобы вязкость термопасты была не слишком высокой: это необходимо для вытеснения воздуха из места термоконтакта при минимальном слое термопасты. Учтите, кстати, что полировка подошвы кулера до зеркального состояния сама по себе может и не улучшить теплообмен. Дело в том, что при ручной обработке практически нереально сделать поверхности строго параллельными, – в итоге зазор между радиатором и процессором может даже увеличиться.

Прежде чем наносить новую термопасту, старательно избавьтесь от старой. Для этого используются салфетки из нетканых материалов (они не должны оставлять волокон на поверхностях). Разводить пасту крайне нежелательно, так как это сильно ухудшает теплопроводящие свойства. Дадим еще несколько рекомендаций:

  • применяйте термопасты с теплопроводностью более 2–4 Вт/(К*м) и низкой вязкостью;
  • устанавливая кулер, каждый раз наносите свежую термопасту;
  • при установке необходимо, зафиксировав кулер креплением, сильно (но не слишком, иначе возможны повреждения) прижать его рукой и несколько раз повернуть вокруг оси в пределах существующих люфтов. В любом случае монтаж требует навыка и аккуратности.

Термотрубки

Термотрубки замечательно подходят для отвода излишков тепла. Они компактны и бесшумны. По конструкции это герметичные цилиндры (могут быть довольно длинными и произвольным образом изогнутыми), частично заполненные теплоносителем. Внутри цилиндра находится другая трубка, сделанная в виде капилляра.

Работает термотрубка следующим образом: в нагретой области теплоноситель испаряется, его пар переходит в охлаждаемую часть термотрубки и там конденсируется – а конденсат по капиллярной внутренней трубке возвращается в нагретую область.

Главное преимущество термотрубок состоит в высокой теплопроводности: скорость распространения тепла равна скорости, с которой пары теплоносителя проходят трубку из конца в конец (она весьма велика и близка к скорости распространения звука). В условиях меняющегося тепловыделения охлаждающие системы на термотрубках очень эффективны. Это важно, например, для охлаждения процессоров, которые, в зависимости от режима работы, выделяют разное количество тепла.

Выпускаемые сейчас термотрубки способны отводить 20–80 Вт тепла. При конструировании кулеров обычно применяются трубки диаметром 5–8 мм и длиной до 300 мм.

Однако при всех преимуществах термотрубок у них есть одно существенное ограничение, о котором далеко не всегда пишут в руководствах. Производители обычно не указывают температуру закипания теплоносителя в термотрубках кулера, между тем именно она определяет порог, при пересечении которого термотрубка начинает эффективно отводить тепло. До этого момента пассивный кулер на термотрубках, не имеющий вентилятора, работает как обычный радиатор. Вообще, чем ниже температура закипания теплоносителя, тем эффективнее и безопаснее кулер на термотрубках; рекомендуемое значение – 35-40°С (лучше, если температура закипания указана в документации).

Подведем итоги. Кулеры на тепловых трубках особенно полезны при высоком (более 100 Вт) тепловыделении, но их можно применять и в других случаях – если не смущает цена. При этом необходимо использовать термопасты, эффективно передающие тепло, – это позволит полностью реализовать возможности кулера. Общий принцип выбора таков: чем больше термотрубок и чем они толще, тем лучше.

Разновидности термотрубок

Термотрубки высокого давления (HTS). В конце 2005 года компания ICE HAMMER Electronics представила новый вид кулеров на тепловых трубках высокого давления, построенных по технологии Heat Transporting System (HTS). Можно сказать, что данная система занимает промежуточное положение между тепловыми трубками и жидкостными системами охлаждения. Теплоносителем в ней является вода с примесью аммиака и других химических соединений при нормальном атмосферном давлении. Благодаря подъему пузырьков, образующихся при закипании смеси, циркуляция теплоносителя значительно ускоряется. Видимо, такие системы максимально эффективно работают, когда трубки занимают вертикальное положение.

Технология NanoSpreader позволяет создавать полые теплопроводящие ленты из меди шириной 70–500 мм и толщиной 1,5–3,5 мм, заполненные теплоносителем. Роль капилляра играет полотно из медных волокон, возвращающее сконденсированный теплоноситель из зоны конденсации в зону нагрева и испарения. Форму плоской ленты поддерживает упругий крупнопористый материал, который не позволяет стенкам спадаться и обеспечивает свободное перемещение паров. Главные преимущества тепловых лент – малая толщина и возможность накрывать большие площади.

Моддинг и системы охлаждения

Слово «моддинг» образовано от английского modify (модифицировать, изменять). Моддеры (те, кто занимается моддингом) преобразуют корпуса и «внутренности» компьютеров с целью улучшения технических характеристик, а главное – внешнего вида. Как и любители автомобильного тюнинга, компьютерные пользователи хотят персонифицировать свой инструмент работы и творчества, незаменимое средство коммуникации и центр домашних развлечений. Моддинг – мощное средство самовыражения; это, безусловно, творчество, возможность поработать головой и руками, приобрести ценный опыт.

ТОВАРЫ ДЛЯ МОДДИНГА

Существует масса специализированных интернет-магазинов (как российских, так и зарубежных), которые предлагают товары для моддинга, доставляя их по всему миру. Отечественными пользоваться удобнее: с иностранными больше хлопот (например, при переводе денег), да и доставка, как правило, дорогая. Подобные специализированные ресурсы легко найти, воспользовавшись поисковыми системами.

Иногда принадлежности для моддинга совершенно неожиданно обнаруживаются в прайс-листах обычных интернет-магазинов, причем цена на них подчас ниже, чем в специализированных. Поэтому рекомендуем не спешить с покупкой того или иного аксессуара – сперва тщательно изучите несколько прайс-листов.

Что изменяют моддеры в компьютерах

Вряд ли среднестатистический моддер способен переделать сложную начинку: возможности пользователя, не обладающего специальными знаниями в области радиоэлектроники и схемотехники, все же ограниченны. Поэтому компьютерный моддинг предполагает в основном «косметическое» преображение корпуса компьютера.

ОСНОВНЫЕ ПРОИЗВОДИТЕЛИ ТОВАРОВ ДЛЯ МОДДИНГА

Чтобы лучше ориентироваться в комплектующих, имеет смысл знать имена некоторых компаний, специализирующихся на выпуске мод-товаров: Sunbeam, Floston, Gembird, Revoltec, Vizo, Sharkoon, Vantec, Spire, Hanyang, 3R System, G. M. Corporation, Korealcom, RaidMax, Sirtec (компьютерные корпуса и блоки питания), Zalman, Akasa (БП, системы охлаждения), Koolance, SwiftTech (водяное охлаждение), VapoChill (системы криогенного охлаждения), Thermaltake (в основном корпуса и мод-панели).

В частности, осуществляются так называемые blowhole-моды: в корпусе прорезаются отверстия для вентиляции, а также для установки дополнительных кулеров. Такие модификации не просто улучшают внешний вид – они полезны для общего «здоровья» компьютера, поскольку усиливают охлаждение компонентов системы.

Опытные моддеры часто сочетают приятное с полезным: устанавливают жидкостные системы охлаждения (большинство их имеет совершенно футуристический дизайн).

Построение эффективной системы водяного охлаждения (СВО) – задача не из легких и в техническом, и в финансовом смысле. Как было сказано, необходим солидный багаж специальных знаний, которые есть далеко не у каждого; да и без технических навыков не обойтись. Все это сильно стимулирует к покупке готовой СВО. Склоняясь к данному варианту, будьте готовы изрядно раскошелиться. Причем далеко не факт, что прирост производительности процессора и прочих компонентов системного блока, даже разогнанного благодаря эффективному отводу тепла новой СВО, окупит разницу в стоимости по сравнению со штатной (или даже улучшенной) системой воздушного охлаждения. Но у такого варианта есть и явные плюсы. Приобретая готовую СВО, вы не должны будете самостоятельно подбирать отдельные компоненты, заказывать их на сайтах разных производителей или продавцов, ожидать доставки и т.п. К тому же не придется заниматься модификацией корпуса ПК – часто это преимущество перевешивает все недостатки. Наконец, серийные СВО обычно дешевле моделей, собранных по частям.

Примером СВО, предоставляющей разумный компромисс между свободной творчества и простотой сборки (без ущерба для эффективности охлаждения), является система KoolanceExos-2 V2. Она позволяет использовать самые разные водоблоки (так называются полые теплообменники, накрывающие охлаждаемый элемент) из широкого ассортимента, выпускаемого компанией. Блок данной СВО объединяет радиатор-теплообменник с вентиляторами, помпу, расширительный бачок, датчики и управляющую электронику.

Процесс установки и подключения таких СВО очень прост – он подробно описан в руководстве пользователя. Учтите, что вентиляционные отверстия СВО располагаются сверху. Соответственно, над вентиляторами должно быть достаточно свободного места для оттока нагретого воздуха (не менее 240 мм при диаметре вентиляторов 120 мм). Если такого пространства сверху нет (например, мешает столешница компьютерного стола), можно просто положить блок СВО рядом с системным блоком – хотя такой вариант не описан в инструкции.

Самый простой и очевидный способ моддинга – замена штатных кулеров на моддерские с подсветкой (их выбор также достаточно широк: есть и мощные процессорные кулеры, и слабенькие – декоративные).

Главное правило: сравнивайте цены в разных поисковых системах и интернет­магазинах! Амплитуда колебаний вас немало удивит. Разумеется, следует выбирать более дешевые предложения, непременно обращая внимание на условия оплаты, доставки и гарантии.

Системы охлаждения компьютера бывают разных типов и разной эффективности. Вне зависимости от этого, у них у всех одна и та же цель: остудить устройства внутри системного блока, чем предохранить их от сгорания и повысить эффективность работы. Разные системы предназначены для охлаждения разных устройств и делают они это при помощи разных способов. Это, конечно, не самая захватывающая тема, но меньше важной она от этого не становится. Сегодня мы подробно разберемся какие системы охлаждения нужны нашему компьютеру, и как добиться максимальной эффективности их работы.

Для начала предлагаю быстренько пробежаться по системам охлаждения вообще, дабы к изучению компьютерных их разновидностей мы подошли максимально подготовленными. Надеюсь, что это сэкономит наше время и упростит понимание. Итак. Системы охлаждения бывают…

Воздушные системы охлаждения

Сегодня это наиболее распространенный тип систем охлаждения. Принцип его действия очень прост. Тепло от нагревающего компонента передается на радиатор с помощью теплопроводящих материалов (может быть прослойка воздуха или специальная теплопроводящая паста). Радиатор получает тепло и отдает его в окружающее пространство, которое при этом либо просто рассеивается (пассивный радиатор), либо сдувается вентилятором (активный радиатор или кулер). Такие системы охлаждения устанавливаются непосредственно в системный блок и практически на все греющиеся компьютерные компоненты. Эффективность охлаждения зависит от размеров эффективной площади радиатора, металла из которого он сделан (медь, аллюминий), скорости проходящего потока воздуха (от мощности и размеров вентилятора) и его температуры. Пассивные радиаторы устанавливаются на те компоненты компьютерной системы, которые не очень сильно греются в процессе работы, и возле которых постоянно циркулируют естественные воздушные потоки. Активные системы охлаждения или кулеры разработаны в основном для процессора, видеоадаптера и прочих постоянно и напряженно работающих внутренних компонентов. Для них иногда могут устанавливаться и пассивные радиаторы, но обязательно с более эффективным чем обычно отводом тепла при низкой скорости воздушных потоков. Это дороже стоит и применяется в специальных бесшумных компьютерах.

Жидкостные системы охлаждения

Чудо-диво-изобретение последней десятилетки, используется в основном для серверов, но в связи с бурным развитием техники, со временем имеет все шансы перебраться и в домашние системы. Дорого и немного страшно, если представить, но достаточно эффективно, поскольку вода проводит тепло в 30 (или около того) раз быстрее воздуха. Такой системой можно практически без шума одновременно охлаждать несколько внутренних компонентов. Над процессором помещается специальная металлическая пластинка (теплосъемник), которая собирает тепло с процессора. Поверх теплосъемника периодически прокачивается дистиллированная вода. Собирая с него тепло, вода попадает в радиатор охлажденный воздухом, остывает и начинает свой второй круг с металлической пластины над процессором. Радиатор при этом рассеивает собранное тепло в окружающую среду, охлаждается и ждет новую порцию нагретой жидкости. Вода в таких системах может быть специальная, например, с бактерицидным либо антигальваническим эффектом. Вместо такой воды может использоваться антифриз, масла, жидкие металлы или еще какая-нибудь жидкость, обладающая высокой теплопроводностью и высокой удельной теплоемкостью, дабы обеспечить максимальную эффективность охлаждения при наименьшей скорости циркуляции жидкости. Конечно, такие системы более дорогие и сложные. Они состоят из помпы, теплосъемника (ватерблок или головка охлаждения), прикрепленного к процессору, радиатора (может быть как активным, так и пассивным), обычно прикрепленного к задней части корпуса компьютера, резервуара для рабочей жидкости, шлангов и датчикв потока, разнообразных измерителей, фильтров, сливных кранов и пр. (перечисленные компоненты, начиная от датчиков, опциональны). Кстати, замена такой системы - занятие не для слабонервных. Это вам не вентилятор с радиатором поменять.

Фреоновая установка

Маленький холодильник, устанавливаемый прямо на нагревающийся компонент. Они эффективны, но в компьютерах применяются в основном, исключительно для разгона. Знающие люди говорят, что у него больше недостатков, чем достоинств. Во-первых, конденсат, который появляется на детальках, более холодных, чем окружающая среда. Как вам перспектива появления жидкости внутри святая святых? Повышенное энергопотребление, сложность и немалая цена – меньшие недостатки, но от этого достоинствами тоже не становятся.

Системы открытого охлаждения

В них используется сухой лед, жидкий азот либо гелий в специальном резервуаре (стакане), установленном прямо на охлаждаемом компоненте. Используется Кулибиными для самого экстремального разгона или оверклокинга, по нашему. Недостатки те же – дороговизна, сложность и пр. + 1 очень существенный. Стакан надо постоянно наполнять и периодически бегать в магазин за его содержимым.


Системы каскадного охлаждения

Две и более последовательно подключенные системы охлаждения (например, радиатор + фреон). Это самые сложные в реализации системы охлаждения, которые в состоянии работать без перерывов, в отличие от всех остальных.

Комбинированные системы охлаждения

Такие сочетают в себе элементы охлаждения систем различных типов. В пример комбинированных можно привести Ватерчпперы. Ватерчипперы = жидкость + фреон. Антифриз циркулирует в системе жидкостного охлаждения и кроме нее охлаждается еще и фреоновой установкой в теплообменнике. Еще более сложно и дорого. Сложность в том, что теплоизоляция понадобится и всей этой системе, зато этот агрегат можно применять для одновременного эффективного охлаждения сразу нескольких компонентов, что довольно сложно реализуется в других случаях.

Системы с элементами Пельтелье

Они никогда не используются самостоятельно и кроме этого, имеют наименьшую эффективность. Их принцип работы описал Чебурашка, когда предложил Гене понести чемоданы (“Давай я понесу чемоданы, а ты понесешь меня”). Элемент Пельтелье устанавливают на нагревающий компонент, а другую сторону элемента охлаждают другой, обычно воздушной или жидкостной системой охлаждения. Поскольку возможно охлаждение до температуры ниже окружающей среды, то проблема конденсата актуальна и в этом случае. Элементы Пельтелье менее эффективны, чем фреоновое охлаждение, но при этом тише и не создают вибраций, как холодильники (фреон).

Если вы никогда не замечали, то внутри вашего системного блока постоянно кипит бурнейшая деятельность: ток бегает туда-сюда, процессор считает, память запоминает, программы работают, жесткий диск вертится. Компьютер работает, одним словом. Из школьного курса физики мы знаем, что проходящий ток нагревает устройство, а если устройство греется, то это – нехорошо. В худшем случае оно просто перегорит, а в лучшем будет просто туго работать. (Это действительно частая причина не слабо тормозящей системы). Именно во избежание таких вот неприятностей внутри вашего системного блока предусмотрено несколько видов разнообразных систем охлаждения. По крайней мере, для самых важных компонентов.

Охлаждение системного блока

Как производится охлаждение? В основном – воздухом. Когда вы включаете компьютер, он начинает гудеть – включается вентилятор (очень часто их несколько), потом он затихает. Через несколько минут работы, когда ваша система достигла определенного порогового температурного значения, вентилятор включается вновь. И так все время работы. Самый большой и самый заметный вентилятор внутри системного блока просто выдувает из коробки нагревшийся воздух, чем и охлаждает все вместе взятое, включая компоненты, на которые трудно установить собственную систему охлаждения, например, жесткий диск. По законам той самой физики, на место нагретого воздуха через специальные вентиляционные отверстия в передней части системного блока, поступает охлажденный воздух. Точнее тот, который еще просто не успел нагреться. Охлаждая собой внутренние части компьютера, он нагревается сам и выходит через отверстия в боковой и/ или задней панели системного блока.

Охлаждение процессора

У процессора, как у очень важного и постоянно загруженного компонента вашего железного друга есть личная система охлаждения. Она состоит аж из двух компонентов – радиатора и вентилятора, конечно же меньших размеров, чем тот о котором мы только что говорили. Радиатор иногда называют теплосъемником, в соответствии с его основной функциональной деятельностью – он рассеивает тепло от процессора (пассивное охлаждение), а маленький вертилятор сверху сдувает тепло с радиатора (активное охлаждение). Кроме этого, процессор смазывается специальной термопастой, способствующей максимальной передаче тепла от процессора к радиатору. Дело в том, что поверхности и процессора, и радиатора даже после полировки имеют зазубрины около 5 мкм. В результате таких зазубрин между ними остается тончайший воздушный слой с очень низкой теплопроводимостью. Именно эти промежутки и замазываются пастой из вещества с высоким коэффициентом теплопроводности. У пасты ограниченный срок действия, соответственно, ее нужно менять. Это удобно делать одновременно с чисткой системного блока, о которой мы поговорим чуть ниже, тем более, что старая паста вообще может давать обратный эффект.

Охлаждение видеокарты

Современная видеокарта – это компьютер внутри компьютера. Система охлаждения крайне необходима и ей. У простеньких и дешевых видеокарт системы охлаждения может и не быть, а вот современные видеоадаптеры для игровых монстров в обязательном порядке нуждаются в освежающей прохладе, пожалуй, даже больше чем вы в сорокаградусную жару.

Загрязнение пылью

Вместе с воздухом из комнаты внутрь вашего системного блока поступает пыль. Причем, даже в регулярно убираемом и проветриваемом помещении, пыли, на диво, достаточно, чтобы за несколько месяцев ежедневной работы опутать вашу новенькую крутилку неизвестно откуда взявшимися длинными, малоприятными для глаз шерстяными лохмами. Это дает обратный эффект – забиваются вентиляционные отверстия, а “лохмы” (кроме того, что они физически не позволяют крутиться вентилятору) не хуже норковой шубы согреют ваш компьютер до самого процессора, причем не только в тропический зной, но и в полярную вьюгу. Человек, насколько я знаю, болеет от переохлаждения, компьютер же вполне может заболеть от перегрева. Лечим бедолагу приблизительно раз в пол года не антибиотиками и горячим чаем с малиной, а пылесосом. Желательно приобретенном в специальном магазине компьютерной техники. Привычный, в очень крайнем случае, сойдет, но следует быть предельно осторожным со статическим электричеством. Его очень не любят внутренние компоненты.

Чистка системы охлаждения

Первый признак плохо работающей или не работающей совсем системы – “не гудит” вентилятор и греется системный блок. Кстати, это частая причина самовыключения компьютера или слишком медленной работы системы, а диагноз настолько прост, что может банально не прийти в голову. И начинается: обновление драйверов, сканирование антивирусом, аппаратное обновление системы, покупка дополнительных модулей оперативной памяти и прочие невеселые телодвижения. Смешно? Скорее печально. Срочно вскрываем пациента и смотрим, что у него внутри. Желательно перед этим поискать точный алгоритм проведения процедуры в технической документации у производителей материнки.

В принципе, в чистке системного блока нет ничего сложного. Нужно выключить компьютер, не забыв вытянуть шнур из розетки, разобрать системный блок и аккуратно очистить все внутренности от пыли. В магазинах продаются специальные пылесосы, которыми это делать лучше всего. Больше всего пыли скапливается на радиаторе с вентилятором и возле вентиляционных отверстий на системном блоке. Аккуратно удаляем с них пылевые накопления и смазываем при необходимости (у вентилятора нужно снять наклейку и капнуть несколько капель на ось вентилятора). Неплохо подойдет масло для швейных машинок. Кроме этого, необходимо очистить процессор от старой термопасты и намазать на него новую. Аналогичные действия повторяем с видеокартой и вентилятором системного блока. Осталось собрать компьютер и пользоваться им еще несколько месяцев перед проведением повторной чистки системного блока. Ноутбуки чистить тоже нужно, причем судя по моему опыту – несколько чаще, чем стационарные (малые расстояния между компонентами внутри ноута и потребление печенюшек и бутербродов рядом с ним любимым делают свое черное дело). Многие пользователи легко справляются с этой процедурой без помощи компьютерных специалистов, но лучше не спешить, особенно с ноутбуками, если вы не чувствуете себя достаточно уверенно. Риски: статическое электричество может вывести из строя материнку, процессор или что-нибудь еще, а также вы сами, в силу неопытности, запросто можете повредить что-нибудь важное. Шутки-шутками, но делать это действительно нужно, иначе проблем может появиться просто немерянное количество.

Если же вы почистили компьютер, но заметного облегчения это не принесло, возможно вам придется установить более сильную систему охлаждения. В самом легком случае может помочь дополнительный вентилятор. Чтобы узнать степень нагрева системных компонентов, можно заглянуть на сайт производителя материнской платы. Вполне возможно, что там вы найдете специальное программное обеспечение, которое поможет это определить. Усредненные показатели для процессора это 30-50 градусов, а в режиме нагрузки до 70-ти. Винчестер не должен греться более чем на 40 градусов. Более точные показатели следует проверить в технической документации.

В завершение описанного, хочу сказать, что в 90 (если не больше) процентах случаев вполне подойдет стандартная штатная система охлаждения. Метаться между качеством и ценой, а также внедрять систему охлаждения в свой компьютер (иногда это довольно рискованно и совсем не просто) действительно нужно владельцам серверов, мощных игровых компьютеров и любителям экспериментов с разгоном. Если же вы покупаете компьютер для дома или офиса, вам нужно просто поинтересоваться, что у него внутри, дабы возможная экономия производителя не вылезла для вас боком.

Самым энергоемким в компьютере является процессор и отвод выделяемой тепловой энергии является актуальной задачей, особенно когда температура окружающей среды высокая. От температуры нагрева процессора зависит не только стабильность и долговечность его работы, но быстродействие, о чем производители процессоров обычно умалчивают.

В подавляющем числе компьютеров система охлаждения процессора выполнена с игнорированием элементарных законов физики. Кулер системы работает в режиме короткого замыкания, так как нет экрана, исключающего возможность всасывания кулером горячего воздуха, выходящего из радиатора процессора. В результате эффективность работы системы охлаждения процессора не превышает 50%. В дополнение, охлаждение производится воздухом, подогретым другими компонентами и узлами, размещенными в системном блоке.

Иногда в системном блоке на задней стенке устанавливают дополнительный кулер, но это не лучшее решение. Дополнительный кулер работает на выталкивание воздуха из системного блока в окружающую среду, как и кулер блока питания. В результате эффективность обоих кулеров намного ниже, если бы они работали по отдельности - один всасывал воздух в системный блок, а другой выталкивал. В результате потребляется дополнительная электроэнергия и что самое не приятное, появляется дополнительный акустический шум.


Предлагаемая конструкция системы охлаждения процессора освобождена от выше перечисленных недостатков, проста в реализации и обеспечивает высокую эффективность охлаждения процессора и как следствие, других компонентов материнской платы. Идея не новая и простая, воздух для охлаждения радиатора процессора берется из-за пределов системного блока, то есть из помещения.

Решил улучшить систему охлаждения процессора своего компьютера, когда на глаза попался конструктив от системы охлаждения брендового, морально устаревшего системного блока.

Осталось закрепить эту деталь в системном блоке и соединить с кулером процессора. Так как длина патрубка была недостаточной, пришлось ее нарастить с помощью полиэтиленовой ленты, свитой в трубку. Диаметр трубки выбран с учетом плотной посадки на корпусе кулера процессора. Чтобы лента не развилась, она зафиксирована металлической скобкой с помощью степлера.

Система закреплена с помощью самостоятельно изготовленных двух уголков саморезами к задней стенке системного блока. Точное позиционирование относительно центра кулера достигнуто за счет длин сторон уголков.

Такая простая конструкция позволила практически исключить поступление горячего воздуха из системного блока в систему охлаждения процессора.

В крышке моего системного блока уже было готовое отверстие, что упростило работу. Но сделать самостоятельно отверстие не сложно, нужно спроецировать точку центра кулера на боковую крышку, циркулем начертить окружность, чуть меньше диаметра трубки. Просверлить сверлом диаметром 2,5-3 мм с шагом 3,5 мм по всей длине линии окружности отверстия. Точки сверления обязательно нужно предварительно наметить керном. Затем рассверлить просверленные отверстия сверлом диаметром 4 мм. Края полученного отверстия обработать круглым напильником. Останется только установить декоративную решетку, хотя она не обязательна.

В качестве воздуховода с успехом можно использовать пластиковую бутылку от напитков. Если подходящего диаметра нет, то можно взять большего, разрезать вдоль и сшить нитками. Высокая герметичность тут не обязательна. Закрепить трубку можно и маленькими винтами непосредственно к корпусу кулера. Главное, обеспечить подачу воздуха в систему охлаждения процессора извне.

Измерения температуры показали высокую эффективность сделанной системы охлаждения процессора Pentium 2,8 ГГц. При 10% нагрузке процессора, при температуре окружающей среды 20°С, температура процессора не превышала 30°С, на ощупь радиатор был холодным. При этом кулер эффективно охлаждал радиатор в режиме самых низких оборотов.

Зачастую после покупки компьютера пользователь сталкивается с таким неприятным явлением, как сильный шум, идущий от охлаждающих вентиляторов. Могут наблюдаться сбои в работе операционной системы из-за нагрева до высоких температур (90°C и более) процессора или видеокарты. Это весьма существенные недостатки, устранить которые возможно с помощью дополнительно устанавливаемого на ПК водяного охлаждения. Как изготовить систему своими руками?

Жидкостное охлаждение, его положительные свойства и недостатки

Принцип действия системы жидкостного охлаждения компьютера (СЖОК) основан на использовании соответствующего теплоносителя. Жидкость за счёт постоянной циркуляции поступает к тем узлам, температурный режим которых необходимо контролировать и регулировать. Дальше теплоноситель по шлангам поступает в радиатор, где и охлаждается, отдавая тепло воздуху, который затем отводится за пределы системного блока с помощью вентиляции.

Жидкость, имея более высокую теплопроводность по сравнению с воздухом, быстро стабилизирует температуру таких аппаратных ресурсов, как процессор и графический чип, приводя их к норме. В результате можно добиться существенного повышения производительности ПК за счёт его системного разгона. При этом надёжность работы компонентов компьютера не будет нарушена.

При использовании СЖОК можно обходиться вообще без вентиляторов или применять маломощные бесшумные модели. Работа компьютера становится тихой, в результате чего пользователь чувствует себя комфортно.

К недостаткам СЖОК следует отнести её дороговизну. Да, готовая система жидкостного охлаждения является удовольствием не из дешёвых. Но ведь при желании её можно сделать и установить самостоятельно. Это займёт время, но будет стоить недорого.

Классификация охлаждающих водяных систем

Жидкостные охлаждающие системы могут быть:

  1. По типу размещения:
    • внешние;
    • внутренние.

      Отличие между внешними и внутренними СЖОК в том, где расположена система: снаружи или внутри системного блока.

  2. По схеме соединения:
    • параллельные - при таком подключении разводка идёт от основного радиатора-теплообменника к каждому водоблоку, обеспечивающему охлаждение процессора, видеокарты или другого узла / элемента компьютера;
    • последовательные - каждый водоблок соединяется друг с другом;
    • комбинированные - такая схема включает одновременно параллельные и последовательные подключения.
  3. По способу обеспечения циркуляции жидкости:
    • помповые - система использует принцип принудительного нагнетания охлаждающей жидкости к водоблокам. В качестве нагнетателя используются помпы. Они могут иметь собственный герметичный корпус либо погружаться в охлаждающую жидкость, находящуюся в отдельном резервуаре;
    • безпомповые - жидкость циркулирует за счёт испарения, при котором создаётся давление, движущее теплоноситель в заданном направлении. Охлаждаемый элемент, нагреваясь, превращает подводимую к нему жидкость в пар, который затем снова становится жидкостью в радиаторе. По характеристикам такие системы значительно уступают помповым СЖОК.

Виды СЖОК - галерея

При использовании последовательного подключения сложно непрерывно обеспечивать хладагентом все подключаемые узлы араллельная схема подключения СЖОК - простое подключение с возможностью легко просчитывать характеристики охлаждаемых узлов Системный блок с внутренней СЖОК занимает много места внутри корпуса компьютера и требует высокой квалификации при монтаже
При использовании внешней СЖОК внутреннее пространство системного блока остаётся свободным

Составляющие элементы, инструменты и материалы для сборки СЖОК

Подберём необходимый набор для жидкостного охлаждения центрального процессора компьютера. В состав СЖОК войдут:

  • водяной блок;
  • радиатор;
  • два вентилятора;
  • помпа;
  • шланги;
  • фитинги;
  • резервуар для жидкости;
  • сама жидкость (в контур можно залить дистиллированную воду или тосол).

Все составляющие системы жидкостного охлаждения можно приобрести в интернет-магазине по соответствующему запросу.

Некоторые узлы и детали, например, водяной блок, радиатор, фитинги, резервуар, можно изготовить самостоятельно. Однако вам, вероятно, придётся заказывать токарные и фрезерные работы. В результате может получиться так, что СЖОК обойдётся дороже, чем если бы вы её приобрели готовой.

Наиболее приемлемым и наименее затратным вариантом будет приобрести основные узлы и детали, после чего самостоятельно монтировать систему. В этом случае достаточно иметь базовый набор слесарного инструмента для выполнения всех необходимых работ.

Делаем жидкостную систему охлаждения ПК своими руками - видео

Изготовление, сборка и монтаж

Рассмотрим изготовление внешней помповой системы жидкостного охлаждения центрального процессора ПК.

  1. Начнём с водоблока. Самую простую модель этого узла можно приобрести в интернет-магазине. Идёт он сразу с фитингами и зажимами.
  2. Водоблок можно изготовить и самостоятельно. В этом случае понадобится медная болванка диаметром от 70 мм и длиной 5–7 см, а также возможность заказать токарные и фрезерные работы в технической мастерской. В результате получится самодельный водоблок, который по окончании всех манипуляций нужно будет покрыть автомобильным лаком для исключения окисления.
  3. Для крепления водоблока можно использовать отверстия на материнской плате в месте изначальной установки радиатора воздушного охлаждения с вентилятором. В отверстия вставляются металлические стойки, на которые крепятся вырезанные из фторопласта планки, прижимающие водоблок к процессору.
  4. Радиатор лучше всего приобрести готовый.

    Некоторые умельцы используют радиаторы от старых автомобилей.

  5. В зависимости от размеров, на радиатор с помощью резиновых прокладок и кабельных стяжек или же посредством саморезов крепятся один или два стандартных компьютерных вентилятора.
  6. В качестве шланга можно использовать обычный жидкостный уровень, сделанный из силиконовой трубки, обрезав его с обеих сторон.
  7. Без фитингов не обходится ни одна СЖОК, ведь именно через них шланги подключаются ко всем узлам системы.
  8. В качестве нагнетателя рекомендуется использовать небольшую аквариумную помпу, которую можно приобрести в зоомагазине. Крепится она в подготовленном резервуаре для охлаждающей жидкости с помощью присосок.
  9. В роли резервуара для жидкости, выполняющего функции расширительного бачка, можно использовать любой пищевой контейнер из пластмассы, имеющий крышку. Главное, чтобы туда помещалась помпа.
  10. Для возможности долива жидкости в крышку контейнера врезается горловина любой пластиковой бутылки с закруткой.
  11. Электропитание всех узлов СЖОК выводится на отдельный штекер для возможности подключения от компьютера.
  12. На заключительном этапе все узлы СЖОК закрепляются на подобранном по размеру листе оргстекла, подключаются и фиксируются зажимами все шланги, штекер электропитания соединяется с компьютером, система заполняется дистиллированной водой или тосолом. После запуска ПК охлаждающая жидкость сразу начинает подаваться к центральному процессору.

Водоблок на компьютер своими руками - видео

Водяное охлаждение превосходит по характеристикам изначально устанавливаемую на современных компьютерах воздушную систему. За счёт жидкостного теплоносителя, используемого вместо вентиляторов, сокращается шумовой фон. Компьютер работает намного тише. Сделать СЖОК можно своими руками, обеспечив при этом надёжную защиту основных элементов и узлов компьютера (процессор, видеокарта и др.) от перегрева.

«Продвинутое» охлаждение

Путем сильного разгона .

*** илл black_mamba

Холодный и молчаливый:

Воздух - наше все!

Но, если у вас стоит не топовая геймерская система и вы не являетесь заядлым оверклокером, то водяная и тем более жидкоазотная или любая другая навороченая система вам наверняка не понадобится. Для того чтобы понизить температуру на несколько градусов (до десяти), что и требуется самым жарким летом, достаточно будет обновить обычное воздушное охлаждение (а также сделать пару нехитрых действий; см. вставку «10 заповедей правильного охлаждения»). Для этого будет достаточно добавить несколько новых кулеров или обновить имеющиеся. В данном контексте важно помнить, что для правильного, продуктивного воздушного охлаждения большую роль играет расположен

Грядущее лето, по прогнозам синоптиков, обещает быть довольно жарким. И этому охотно веришь, вспоминая небывалую жару уже в середине апреля. А это значит, что на наши компьютеры, а вернее их комплектующие, опять упадет дополнительная нагрузка в виде лишних градусов. Конечно, если дома есть кондиционер, то об этом можно не беспокоиться, но если его нет, существует реальная угроза перегрева компонентов и выхода их из строя. Как помочь нашим электронным друзьям в летний зной? О простых, недорогих и продвинутых способах речь и пойдет далее.

«Продвинутое» охлаждение

Дополнительно охладить ПК можно множеством способов. Например, используя радиаторные, жидкостные, фреонные, жидкоазотные и жидкогелиевые охлаждения, а также охлаждения на базе жидкого металла. Используются такие системы в основном в оверклокинге, и острой потребности в них обычные пользователи не имеют. Собственно, это все равно что сравнивать потребности автогонщика и обычного (пускай даже продвинутого) автолюбителя. Отличие этих самых технических потребностей налицо.

Системы водяного охлаждения пользуются заслуженной популярностью у оверклокеров. Принцип их действия основан на циркуляции теплоносителя. Нуждающиеся в охлаждении компоненты компьютера нагревают воду, а вода, в свою очередь, охлаждается в радиаторе. При этом радиатор может находиться снаружи корпуса и даже быть пассивным (то есть работать без теплоотводящего вентилятора) .

Следует отдельно сказать о криогенных системах охлаждения для ПК, работающих по принципу смены фазового состояния вещества, подобно холодильнику и кондиционеру. Недостатком криогенных систем является высокий шум, большая масса и стоимость, сложность в инсталляции. Но только используя подобные системы, возможно добиться отрицательной температуры процессора или видеокарты, а соответственно, и высочайшей производительности путем сильного разгона .

Холодный и молчаливый: Вот так довольно симпатично выглядит ПК, снабженный системой водяного охлаждения. Большим преимуществом такой системы является и то, что компьютер работает практически бесшумно.

Стоит добавить пару слов о преимуществах сложных систем охлаждения. Они бесшумные, и в любой момент в ПК можно включить возможность принудительного усиленного охлаждения. Из минусов для рядового пользователя стоит отметить довольно высокую стоимость (от $ 100) готовой системы, требование большой аккуратности при ее использовании и потребность в дополнительных аксессуарах при установке. В любом случае, эксперименты с такими типами охлаждения стоит проводить только при потребности - если у вашего ПК действительно огромные мощности.

Воздух - наше все!

Но, если у вас стоит не топовая геймерская система и вы не являетесь заядлым оверклокером, то водяная и тем более жидкоазотная или любая другая навороченая система вам наверняка не понадобится. Для того чтобы понизить температуру на несколько градусов (до десяти), что и требуется самым жарким летом, достаточно будет обновить обычное воздушное охлаждение (а также сделать пару нехитрых действий; см. вставку «10 заповедей правильного охлаждения»). Для этого будет достаточно добавить несколько новых кулеров или обновить имеющиеся. В данном контексте важно помнить, что для правильного, продуктивного воздушного охлаждения большую роль играет расположение вентиляторов. Фактически, максимальный эффект достигается не тогда, когда вовнутрь корпуса нагнетается как можно больше холодного воздуха, а когда организовываются эффективные воздушные потоки, с грамотным вводом холодного воздуха вовнутрь и вывода теплого наружу (если все вентиляторы будут работать на вдув, воздух внутри просто будет быстро нагреваться, не имея возможности нормаль выйти за пределы корпуса).

Возможности установки дополнительных вентиляторов зависят не только от вашего кошелька, но и от корпуса. В этом плане не позавидуешь обладателям старых или самых дешевых корпусов. Зачастую они не имеют дополнительных мест под установку кулеров, а вывод горячего воздуха в них реализован очень просто: потоки выводятся при помощи вентилятора, расположенного на блоке питания и задней стенке компьютера. Это создает серьезную нагрузку не только на него, но и на процессор, который в большинстве маетринских плат устанавливается как раз в верхней части. Поэтому если вы покупаете новый компьютер, не пожалейте лишние 300-400 грн на корпус. Да и старый ПК можно перенести в новый «дом» - сделать это несложно.

В большинстве современных корпусов предусмотрено несколько мест для установки кулеров. Если вы внимательно читали тесты корпусов в нескольких предыдущих номерах нашего журнала, то наверняка заметили, что технических характеристиках мы указывали количество не только предустановленных кулеров, но и посадочных мест для дополнительных. Давайте рассмотрим, где какие вентиляторы лучше всего ставить (для простоты мы предположим, что наш виртуальный корпус обладает посадочными местами на всех панелях).

Продвинутые модели кулеров имеют ряд преимуществ перед обычными вентиляторами. Например, у этого симпатичного зеленого «малыша» от ThermalTake благодаря шести медным теплоотводящим трубкам радиатор отведен достаточно далеко от процессора. Для охлаждения радиатора используется сразу два вентилятора. Один нагнетает воздух, другой его эффективно отводит

На вдув:

Кулеры, работающие на вдув, обязательно ставятся на передней панели. Там они будут эффективно охлаждать жесткие диски и нагнетать воздух вовнутрь - такие себе ворота для холодного воздуха. Если у вас один жесткий диск, можно вполне обойтись и такими нагнетающими вентиляторами, но лучше (а если жестких дисков несколько, то крайне рекомендуется) ставить вентиляторы на боковые панели (либо на одну из них, зачастую такие места есть на левой, реже на обоих, ну и совсем исключительный случай, когда только на правой). В итоге воздух будет нагнетаться непосредственно в район материнской платы (то есть прямо на процессор и видеокарту, что будет существенным подспорьем для их штатных систем охлаждения) и освежать поток воздуха с фронтальной панели, подогретый жесткими дисками. Если есть такая возможность, можно поставить вентилятор и на нижнюю панель (дно) - холодный воздух с низов также будет эффективно дополнять воздушные потоки и лучше вытеснять нагретый воздух к верху.

На выдув:

Кулеры, выводящие теплый воздух за пределы корпуса ставятся на заднюю и, если есть возможность, на верхнюю панель. Таким образом, мы получаем постоянный продувающий воздушный поток, который эффективно охлаждает все компоненты ПК и моментально, нагревшись, выходит за пределы корпуса, освобождая таким образом место холодному воздуху.

Как делать не надо:

Ставить вентилятор на задней панели на вдув. Из-за этого создается замкнутое воздушное кольцо между блоком питания и кулером, и часть горячего воздуха из блока питания тут же всасывается обратно внутрь.

Ставить фронтальный вентилятор на выдув. Тут есть несколько вариантов, в зависимости от расположения других вентиляторов, но в любом случае, учитывая, что кулер на блоке питания работает тоже на выдув, эффективного потока воздуха не получится, а жесткие диски будут нести дополнительную тепловую нагрузку.

Пожалуй, самый клинический случай - когда все вентиляторы работают на выдув, создавая таким образом внутри корпуса разреженную атмосферу и низкое давление. Да, мы знаем, что разреженная среда нагревается хуже, но при таком построении системы охлаждения внутри почти не будет движения воздуха, а тот, что есть, все равно со временем существенно нагреется. Такая схема, кстати, самая тяжелая для компонентов ПК, которым некуда выбрасывать накопившееся тепло.

Указанный на схеме способ охлаждения - один из самых эффективных. В зависимости от потребностей можно доставить вдувающие кулера на нижнюю и боковые панели

Тишина - залог здоровья

От установки дополнительных вентиляторов некоторых пользователей отпугивает то, что после этого поднимется уровень шума, издаваемый системой. Но на самом деле количество дополнительных децибел можно свести к минимуму. Вот несколько рекомендаций:

1. Если позволяет слот, покупайте вентилятор большего размера. Вопреки расхожему мнению, при одинаковом объеме вдутого воздуха он будет издавать меньше шума, чем маленький, вследствие того, что для этого ему понадобится сделать меньше оборотов. Большее количество лопастей также будет способствовать меньшему шумообразованию.

2. Некоторые корпуса имеют функцию ручной регулировки скорости вращения вентиляторов. Если же таковой в вашем нет, можно воспользоваться специальными программами (в них есть возможность автоматической регулировки в зависимости от температуры компонентов). В любом случае, максимальные обороты кулера нужны далеко не всегда, а на минимальных оборотах система даже с множеством кулеров будет работать весьма тихо.

3. Если материнская плата имеет четырехконтактные разъемы для питания кулеров, то покупайте именно четырехпроводные вентиляторы. Они очень тихие, и диапазон автоматической регулировки оборотов у них довольно широкий.

4. Обращайте внимание на тип подшипника. Например, гидродинамические подшипники обеспечивают очень тихую работу вентилятора.

В кулере Zalman ZM-F2 FDB используется гидродинамический подшипник, что существенно уменьшает вибрацию и, как следствие, уровень шума

Младшие «братья»

С охлаждением ноутбуков история совсем другая и гораздо более сложная. Хотя в плане тепловыделения они сильно уступают настольным ПК, а оптимальную конструкцию теплоотводов в них закладывает уже сам производитель, изменить что-либо в системе охлаждения лэптопа (если ее возможностей недостаточно) весьма проблематично. Так сказать, дополнительный кулер некуда вкрутить. Поэ тому существуют другие варианты. Кстати, первое, о чем стоит упомянуть, - все та же пресловутая установка программы для проверки температур. Узнать нормальную температуру для конкретных ноутбучных комплектующих можно на сайте производителя. Хотя для лэптопов все же существуют примерные нормы. Итак, для процессора нормальной температурой можно считать 75– 80 °C под нагрузкой (если выше 90 - однозначно перегрев); для видеокарты - 70– 90 °C ; для винчестера - 50– 55 (если выше 60, то стоит скопировать с винчестера важные данные. Есть риск их потерять); а чипсет спокойно выдержит нагревы до 90 °C .

Золотым правилом ноутбучного пользователя должна быть проверка того, не закрыты ли отверстия для вентиляции. Компьютер ни в коем случае нельзя ставить на кровать или другую мягкую мебель, одеяла и проч., как делают герои многих фильмов. На то они и фильмы, а перегрев ноутбуку обеспечен. Обычно ничего страшного не происходит, но в некоторых случаях возможен выход из строя видеокарты, северного и южного мостов. Также может дать сбой винчестер, что приведет к потере информации. Это происходит потому, что у чипов есть максимальная температура, после которой начинается разрушение их структуры. Обычно это 110– 125 °C . При такой температуре повреждается как сам чип, так и контакт чипа с платой. В итоге ноутбук может или вообще не включаться из­— за проблем с чипсетом, или выдавать различные артефакты на экран. А вот п роцессор выходит из строя очень редко.

Если так хочется работать на кровати, но нет возможности потратиться на кулер— подставку, можно использовать для работы в кресле или кровати обычный пластиковый/металлический/деревянный поднос для еды либо фанерную доску по размеру устройства. Естественно, при этом следует проследить, чтобы ни одно отверстие для вентиляции не перекрывалось.

При использовании лэптопа за столом существует один прием - подложить что-нибудь под его задний торец. В большинстве случаев воздух, который охлаждает компоненты ноутбука, засасывается через отверстия и прорези в днище ноутбука. Часть воздуха также засасывается со стороны клавиатуры. При приподнимании заднего торца ноутбука увеличивается зазор между днищем и столом. Как следствие улучшается циркуляция воздуха. Иными словами, воздух, который прогоняется через радиатор системы охлаждения, становится холоднее. Также за счет уменьшения сопротивления этого воздуха засасывается больше. В результате температура может упасть на 5– 10 °C . Под задний торец можно подложить все что угодно, начиная от книжек и заканчивая канцелярскими резинками. Хотя для этого есть и специальные гаджеты, к примеру, Belkin Laptop CoolStrip.

Наконец, кулерные подставки для ноутбуков - тоже хороший вариант для охлаждения. Но опять же, не все достаточно эффективны. К примеру, маленькие раскладывающиеся вентиляторы, которые подкладываются под лэптоп, обычно просто разгоняют воздух вокруг себя и подымают пыль. Подставку оптимально брать не изогнутую внутрь, а с прямой поверхностью, возможно немного наклоненную для большего удобства, чтобы экран ноутбука располагался чуть выше. Таких моделей большинство - CoolerMaster NotePal, Zalman, Vantec LapCool и много других. Кстати, с дополнительным охлаждением максимальный нагрев ноутбука составляет на 4– 5 °C меньше, чем без него. А охлаждение до нормального уровня происходит значительно быстрее: возврат на «фоновое» значение температуры занимает всего лишь около двух минут, а без него - почти 15.

10 заповедей правильного охлаждения

Подобно математику и философу Рене Декарту, пойдем от простого к сложному. Повторение прописных истин об охлаждении ПК иногда помогает понять, что же было упущено. Итак…

1. Системный блок лучше опустите пониже (в идеале - на специальную подставку на колесиках). Из школьного курса физики все наверняка помнят, что горячий воздух обычно поднимается вверх, а холодный - опускается вниз.

2. Исследуйте окружение системника - нет ли рядом занавесок, салфеток, кресел и другой домашней утвари, которая может мешать полноценному воздухообмену компьютера.

3. Регулярно продувайте внутренности ПК пылесосом. Пыль и шерсть животных может очень ощутимо забивать кулеры, особенно на блоке питания.

4. Настройте кулеры на передней панели на вдув, на задней - на выдув.

5. Проследите, чтобы в системном блоке в таком случае не было больших зазоров (к примеру, дырки от вынутой панельки для привода).

6. Провода внутри также не должны препятствовать циркуляции воздуха, потому их стоит аккуратно уложить и укрепить обычными хомутиками.

7. Проверьте наличие термопасты и при потребности обновите ее (50-граммовый тюбик стоит копейки, а хватит его на 40– 50 чисток). Для этого нужно снять кулеры с процессора и видеокарты и аккуратно оттереть спиртом от остатков старой термопасты, затем так же скрупулезно смазать поверхности контакта процессора и радиатора и поставить все на место.

8. Если в корпусе стоит несколько винчестеров, их стоит поставить в слоты подальше друг от друга.

9. По возможности не подключайте к ПК энергопотребляемые устройства вроде USB-холодильников, вентиляторов и прочего (особенно это касается ноутбуков).

10. При потребности смените штатные кулеры на более продвинутые или доставьте новые, если есть соответствующие слоты на корпусе.

Вышеупомянутые приемы для ПК - очистка от пыли и обновление термопасты - для лэптопов тоже хороши. Хотя, конечно же, разбирать их самостоятельно следует лишь при таких условиях: а) срок гарантийного обслуживания истек и пломбы можно нарушать; б) вы уверены, что ноутбук вы соберете обратно (с ПК в плане сборки все намного проще). Если первое условие не соблюдено, но вы подозреваете, что ваш портативный «друг» засорился, лучше обратиться в сервисный центр. Для замены термопасты нужны опыт и знания, а гарантия при самостоятельной очистке теряется.

Укладка проводов внутри ПК - дело пяти минут, но эффективность будет налицо



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: