Исследование функции матлаб. В помощь математикам: обзор MATLAB

M-файлы являются обычными текстовыми файлами, которые создаются с помощью текстового редактора. Для операционной среды персонального компьютера система MATLAB поддерживает специальный встроенный редактор/отладчик, хотя можно использовать и любой другой текстовый редактор с ASCII-кодами.

Открыть редактор можно двумя способами:

  • из меню File выбрать опцию New, а затем M-File.
  • использовать команду редактирования edit.

Пример

Команда edit poof запускает редактор и открывает файле poof.m. Если имя файла опущено, то запускается редактор и открывается файл без имени.
Теперь можно записать, например, функцию fact, приведенную выше, вводя строки текста и сохраняя их в файле с именем fact.m в текущем каталоге.
Как только такой файл создан, можно выполнить следующие команды:

  • Вывести на экран имена файлов текущего каталога:
    what
  • Вывести на экран текст M-файла fact.m:
    type fact
  • Вызвать функцию fact с заданными параметрами:
    fact (5)
    ans= 120

М-сценарии

Сценарии являются самым простым типом M-файла – у них нет входных и выходных аргументов. Они используются для автоматизации многократно выполняемых вычислений. Сценарии оперируют данными из рабочей области и могут генерировать новые данные для последующей обработки в этом же файле. Данные, которые используются в сценарии, сохраняются в рабочей области после завершения сценария и могут быть использованы для дальнейших вычислений.

Пример
Следующие операторы вычисляют радиус-вектор rho для различных тригонометрических функций от угла theta и строят последовательность графиков в полярных координатах.

Создайте М-файл petals.m, вводя указанные выше операторы. Этот файл является сценарием. Ввод команды petals.m в командной строке системы MATLAB вызывает выполнение операторов этого сценария.

После того, как сценарий отобразит первый график, нажмите клавишу Return, чтобы перейти к следующему графику. В сценарии отсутствуют входные и выходные аргументы; программа petals.m сама создаёт переменные, которые сохраняются в рабочей области системы MATLAB. Когда выполнение завершено, переменные (i, theta и rho) остаются в рабочей области. Для того чтобы увидеть этот список, следует воспользоваться командой whos.

М-функции

М-функции являются M-файлами, которые допускают наличие входных и выходных аргументов. Они работают с переменными в пределах собственной рабочей области, отличной от рабочей области системы MATLAB.

Пример

Функция average - это достаточно простой M-файл, который вычисляет среднее значение элементов вектора:
function y = average (x)
% AVERAGE Среднее значение элементов вектора.
% AVERAGE(X), где X - вектор. Вычисляет среднее значение элементов вектора.
% Если входной аргумент не является вектором, генерируется ошибка.
= size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))
error("Входной массив должен быть вектором’)
end
y =sum(x)/length(x); % Собственно вычисление

Попробуйте ввести эти команды в M-файл, именуемый average.m. Функция average допускает единственный входной и единственный выходной аргументы. Для того чтобы вызвать функцию average, надо ввести следующие операторы:

z = 1:99;
average(z)
ans = 50

Структура М-функции. M-функция состоит из:

  • строки определения функции;
  • первой строки комментария;
  • собственно комментария;
  • тела функции;
  • строчных комментариев;

Строка определения функции. Строка определения функции сообщает системе MATLAB, что файл является М-функцией, а также определяет список входных аргументов.

Пример
Строка определения функции average имеет вид:
function y = average(x)
Здесь:

  1. function - ключевое слово, определяющее М-функцию;
  2. y - выходной аргумент;
  3. average - имя функции;
  4. x - входной аргумент.

Каждая функция в системе MATLAB содержит строку определения функции, подобную приведенной.

Если функция имеет более одного выходного аргумента, список выходных аргументов помещается в квадратные скобки. Входные аргументы, если они присутствуют, помещаются в круглые скобки. Для отделения аргументов во входном и выходном списках применяются запятые.

Пример

function = sphere(theta, phi, rho)

Имена входных переменных могут, но не обязаны совпадать с именами, указанными в строке определения функции.

Первая строка комментария . Для функции average первая строка комментария выглядит так:

% AVERAGE Среднее значение элементов вектора

Это - первая строка текста, которая появляется, когда пользователь набирает команду help <имя_функции>. Кроме того, первая строка комментария выводится на экран по команде поиска lookfor. Поскольку эта строка содержит важную информацию об M-файле, она должна быть тщательно составлена.

Комментарий . Для M-файлов можно создать online-подсказку, вводя текст в одной или более строках комментария.

Пример

Сформируем несколько строк комментария

% Функция average(x) вычисляет среднее значение элементов вектора x.
% Если входной аргумент не является вектором, выдается ошибка.

Тогда при вводе команды подсказки help <имя_функции>, система MATLAB отображает строки комментария, которые размещаются между строкой определения функции и первой пустой строкой, либо началом программы. Команда help <имя_функции> игнорирует комментарии, размещенные вне этой области.

Пример

help sin
SIN Sine.
SIN(X) is the sine of the elements of X
SIN(X) вычисляет функцию синуса элементов массива X.

MATLAB выводит на экран строки файла Contents.m по команде help <имя_каталога>.

Если каталог не содержит файла Contents.m, то по команде help <имя_каталога> распечатывается первая строка комментария для каждого M-файла данного каталога.

Тело функции . Тело функции содержит код языка MATLAB, который выполняет вычисления и присваивает значения выходным аргументам. Операторы в теле функции могут состоять из вызовов функций, программных конструкций для управления потоком команд, интерактивного ввода/вывода, вычислений, присваиваний, комментариев и пустых строк.

Пример

Тело функции average включает ряд простейших операторов программирования:

Как уже говорилось ранее, комментарии отмечаются знаком (%). Строка комментария может быть размещена в любом месте M-файла, в том числе и в конце строки.

Пример

% Найти сумму всех элементов вектора x
y = sum(x) % Использована функция sum
.

Кроме строк комментариев в текст М-файла можно включать пустые строки. Однако надо помнить, что пустая строка может служить указателем окончания подсказки.

Имена М-функций . В системе MATLAB на имена М-функций налагаются те же ограничения, что и на имена переменных - их длина не должна превышать 31 символа. Более точно, имя может быть и длиннее, но система MATLAB принимает во внимание только первые 31 символ. Имена М-функций должны начинаться с буквы; остальные символы могут быть любой комбинацией букв, цифр и подчеркиваний.

Имя файла, содержащего М-функцию, составляется из имени функции и расширения “.m”.

Пример

average.m
Если имя файла и имя функции в строке определения функции разные, то используется имя файла, а внутреннее имя игнорируется. Хотя имя функции, определенное в строке определения функции, может и не совпадать с именем файла, настоятельно рекомендуется использовать одинаковые имена.

Двойственность функций и команд . Команды системы MATLAB - это операторы вида:
load
help

Многие команды могут быть модифицированы добавлением операндов:
load August17.dat
help magic
type rank

Альтернативный метод задания модификаторов - определить их в качестве строковых аргументов функции:

load("August17.dat")
help("magic")
type("rank")

В этом заключается двойственность понятий команды и функции в системе MATLAB. Любая команда вида

command argument

может быть записана в форме функции

command("argument").

Преимущество функционального описания проявляется, когда строка аргументов формируется по частям. Следующий пример показывает, как может быть обработана последовательность файлов August1.dat, August2.dat, и т.д. Здесь используется функция int2str, которая переводит целое число в строку символов, что помогает сформировать последовательность имён файлов.

for d = 1:31
s = ["August" int2str(d) ".dat"]
load(s) %Загрузить файл с именем August"d".dat
% Операторы обработки файла
end

Часто при программировании приходится много раз повторять одни и те же вычисления, например, определение модуля числа или расчет евклидового расстояния между точками и т.п. Для реализации таких повторяющихся вычислений целесообразно создавать функции и вызывать их по мере необходимости.

4.1. Порядок определения и вызова функций

В первой главе данного пособия был показан порядок определения собственных функций в программе MatLab. В данном параграфе остановимся на более подробном описании программирования пользовательских функций.

Синтаксис для определения собственных функций в MatLab имеет следующий вид:

function [ RetVal1, RetVal2,… ] = FunctionName(arg1, arg2,…)
<тело функции>

где RetVal1, RetVal2,... – набор возвращаемых значений функцией (результаты работы); arg1, arg2,... – набор входных аргументов; тело функции – набор операторов (программа), которые выполняются при вызове функции.

Рассмотрим пример реализации функции для вычисления евклидового расстояния:

function length = euqlid(x1, y1, x2, y2)
length = sqrt((x1-x2)^2+(y1-y2)^2);

Продемонстрируем возможность возвращения нескольких параметров на примере вычисления ширины и высоты прямоугольника, заданного координатами левого верхнего угла (x1,y1) и правого нижнего (x2,y2):

function = RectangleHW(x1,y1,x2,y2)
width = abs(x1-x2);
height = abs(y1-y2);

Данную функцию можно записать еще и с таким набором параметров:


width = abs(P1(1)-P1(2));
height = abs(P2(1)-P2(2));

где P1 и P2 – векторы (массивы) размером в 2 элемента и описывают точку в двумерном пространстве. В этом случае при вызове функции, значения координат точек можно передавать таким образом:

RectangleHW(, );

Если же программист сделает ошибку и при вызове функции передаст неверный размер вектора, например, так

RectangleHW(0, );

то выполнение функции завершится с ошибкой и выполнение всего алгоритма остановится. Чтобы избежать этой ситуации MatLab позволяет проводить проверку корректности переданных аргументов и корректно завершать работу функции без остановки работы всего алгоритма. Следующий пример записи функции демонстрирует работу такой проверки:

function = RectangleHW(P1, P2)
if length(P1) < 2 | length(P2) < 2
end

width = abs(P1(1)-P1(2));
height = abs(P2(1)-P2(2));

При выполнении данной функции с неверными параметрами, функция выдаст сообщение об ошибке в командное окно MatLab, но программа продолжит свою работу.

Предложенная проверка осуществляет контроль за корректностью переданных аргументов. Однако важной является также проверка числа переданных входных аргументов и числа возвращаемых значений функцией. Например, если вместо двух аргументов, был передан только один, то функция ошибочно завершит свою работу. Аналогично, если функция ожидает возврата трех аргументов, в то время как она определена лишь для двух, то также возникнет ошибочная ситуация.

Для проверки числа переданных аргументов и числа ожидающих возвращаемых значений используются переменные nargin и nargout. Ниже приведен пример функции, использующей проверку корректности числа входных и выходных аргументов.

function = RectangleHW(P1, P2)
if nargin ~= 2
error("Bad number of parameters");
end
if nargout ~= 2
error("Must be 2 return values");
end
if length(P1) < 2 | length(P2) < 2
error("Bad 1st or 2nd parameter");
end

width = abs(P1(1)-P1(2));
height = abs(P2(1)-P2(2));

При этом проверки корректности параметров функции будут срабатывать в следующих ситуациях:

RectangleHW(); % Bad number of parameters
= RectangleHW(, ); % Must be 2 return
% values
= RectangleHW(0, ); % Bad 1st or 2nd parameter

Те, кто имеет дело с высшей математикой, прекрасно знают, с какими математическими «чудовищами» иногда приходится сталкиваться. Например, на вычисление какого-нибудь гигантского тройного интеграла можно потратить настоящую уйму времени, душевных сил и не восстанавливающихся нервных клеток. Конечно, это очень интересно, бросить вызов интегралу, и взять его. Но, что делать, если вместо этого интеграл грозиться взять Вас? Или, что еще хуже, кубический трехчлен вышел из-под контроля и разбушевался? Такого и врагу не пожелаешь.


Раньше вариантов было всего два: плюнуть на все и пойти гулять или вступить в многочасовую схватку с интегралом. Ну, кому многочасовую, кому многоминутную – кто как учился. Но суть не в этом. Двадцатый век и неумолимо движущийся прогресс предлагают нам третий способ, а именно позволяют взять самый сложный интеграл «по-быстрому». То же самое касается решения всевозможных уравнений, построения графиков функций в виде кубических гиперболоидов и т.д.

Для таких неординарных, но периодически случающихся среди студентов ситуаций существует мощное математическое оружие. Встречайте, кто еще не знает – пакет программ MATLAB.

Матлаб и решит уравнение, и аппроксимирует, и построит график функции. Понимаете, что это значит, друзья?

Это значит, что – один из мощнейших на сегодняшний день пакетов обработки данных. Название расшифровывается как Matrix Laboratory. Матричная Лаборатория, если по-русски. Возможности программы покрывают практически все области математики. Так, пользуясь матлабом, Вы сможете:

  • Производить всевозможные операции над матрицами, решать линейные уравнения, работать с векторами;
  • Вычислять корни многочленов любой степени, производить операции над многочленами, дифференцировать, экстраполировать и интерполировать кривые, строить графики любых функций;
  • Проводить статистический анализ данных с использованием цифровой фильтрации, статистической регрессии;
  • Решать дифференциальные уравнения. В частных производных, линейных, нелинейных, с граничными условиями – не важно, матлаб все решит;
  • Выполнять операции целочисленной арифметики.

Помимо всего этого возможности MATLAB позволяют визуализировать данные вплоть до построения трехмерных графиков и создания анимированных роликов.

Наше описание матлаб, конечно, далеко не полное. Помимо предусмотренных производителем возможностей и функций существует огромное количество инструментов матлаб, написанных просто энтузиастами или другими компаниями.

MATLAB как язык программирования


А еще – это язык программирования, используемый непосредственно при работе с программой. Не будем вдаваться в подробности, скажем только, что программы, написанные на языке MATLAB, бывают двух видов: функции и скрипты.


Основной рабочий файл программы – М-файл. Это бесконечный текстовый файл, и именно в нем происходит непосредственно программирование вычислений. Кстати, пусть Вас не пугает это слово – для того, чтобы работать в MATLAB, вовсе не нужно быть профессиональным программистом.

М-файлы делятся на

  • М-сценарии. М-сценарий – самый простой тип M-файла, у которого отсутствуют входные и выходные аргументы. Данный файл используется для автоматизации многократно повторяемых вычислений.
  • M-функции. М-функции – это М-файлы, допускающие наличие входных и выходных аргументов.

Для того чтобы наглядно показать, как происходит работа в MATLAB, приведем ниже пример создания функции в матлабе. Данная функция будет вычислять среднее значение вектора.
f unction y = average (x)
% AVERAGE Среднее значение элементов вектора.
% AVERAGE(X), где X - вектор. Вычисляет среднее значение элементов вектора.
% Если входной аргумент не является вектором, генерируется ошибка.
= size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))
error("Входной массив должен быть вектором’)
end
y =sum(x)/length(x); % Собственно вычисление

Строка определения функции сообщает системе MATLAB, что файл является М-функцией, а также определяет список входных аргументов. Так, строка определения функции average имеет вид:
function y = average(x)
Где:

  1. function - ключевое слово, определяющее М-функцию;
  2. y - выходной аргумент;
  3. average - имя функции;
  4. x - входной аргумент.

Итак, чтобы написать функцию в матлабе, необходимо помнить, что каждая функция в системе MATLAB содержит строку определения функции, подобную приведенной.

Безусловно, такой мощный пакет нужен не только для того, чтобы облегчить жизнь студентам. В настоящее время MATLAB, с одной стороны, очень популярен среди специалистов многих научных и инженерных отраслей. С другой стороны, возможность работы с большими матрицами делает MATLAB незаменимым инструментом финансовых аналитиков, позволяющим решить намного больше задач, чем, к примеру, известный всем Excel. Подробнее о том, вы можете прочитать в обзорной статье.

Недостатки работы с MATLAB


Какие есть трудности в работе с MATLAB? Трудность, пожалуй, всего одна. Но фундаментальная. Чтобы полностью раскрыть возможности MATLAB и с легкостью решать встающие перед Вами задачи, придется попотеть и сначала разобраться с самим матлабом (как создать файл, как создать функцию и др.). А это не так просто, ибо мощность и широкие возможности требуют жертв.

При всем желании нельзя сказать, что MATLAB – простая программа. Тем не менее, надеемся, все вышеперечисленное будет достаточным аргументом для того, чтобы взяться за ее освоение.

И напоследок. Если Вы не знаете, почему все в Вашей жизни пошло так, а не иначе, спросите об этом у матлаба. Просто наберите в командной строке “why” (почему). Он ответит. Попробуйте!

Теперь вы знаете возможности Матлаб. В области образования MATLAB часто используется в преподавании численных методов и линейной алгебры. Многим студентам не обойтись без него при обработке результатов эксперимента, проведенного в ходе лабораторной работы. Для быстрого и качественного освоения основ работы с MATLAB Вы всегда можете обратиться к , в любой момент готовым ответить на любой Ваш вопрос.

2. Синтаксис определения и вызова M-функций .

Текст M-функции должен начинаться с заголовка , после которого следует тело функции .

Заголовок определяет " интерфейс" функции (способ взаимодействия с ней) и устроен следующим образом:

function [ RetVal1, RetVal2,… ] = FunctionName(par1, par2,…)

Здесь провозглашается функция (с помощью неизменного "ключевого" слова function) с именем FunctionName, которая принимает входные параметры par1, par2,…, и вырабатывает (вычисляет) выходные (возвращаемые) значения RetVal1, RetVal2…

По-другому говорят, что аргументами функции являются переменные par1, par2,.., а значениями функции (их надо вычислить) являются переменные RetVal1, RetVal2,… .

Указанное в заголовке имя функции (в приведённом примере - FunctionName) должно служить именем файла, в который будет записан текст функции. Для данного примера это будет файл FunctionName.m (расширение имени, по-прежнему, должно состоять лишь из одной буквы m). Рассогласования имени функции и имени файла не допускается!

Тело функции состоит из команд, с помощью которых вычисляются возвращаемые значения. Тело функции следует за заголовком функции. Заголовок функции плюс тело функции в совокупности составляют определение функции.

Как входные параметры, так и возвращаемые значения могут быть в общем случае массивами (в частном случае - скалярами) различных размерностей и размеров. Например, функция MatrProc1

function [ A, B ] = MatrProc1(X1, X2, x)

A = X1 .* X2 * x;

B = X1 .* X2 + x;

рассчитана на "приём" двух массивов одинаковых (но произвольных) размеров и одного скаляра.

Эти массивы в теле функции сначала перемножаются поэлементно, после чего результат такого перемножения ещё умножается на скаляр. Таким образом порождается первый из выходных массивов. Одинаковые размеры входных масивов X1 и X2 гарантируют выполнимость операции их поэлементного умножения. Второй выходной массив (с именем B) отличается от первого тем, что получается сложением со скаляром (а не умножением).

Вызов созданной нами функции осуществляется из командного окна системы MATLAB (или из текста какой-либо другой функции) обычным образом: записывается имя функции, после которого в круглых скобках через запятую перечисляются фактические входные параметры , со значениями которых и будут произведены вычисления. Фактические параметры могут быть заданы числами (массивами чисел), именами переменных, уже имеющими конкретные значения, а также выражениями.

Если фактический параметр задан именем некоторой переменной, то реальные вычисления будут производиться с копией этой переменной (а не с ней самой). Это называется передачей параметров по значению .

Ниже показан вызов из командного окна MATLABа ранее созданной нами для примера функции MatrProc1.

Здесь имена фактических входных параметров (W1 и W2) и переменных, в которых записываются результаты вычислений (Res1 и Res2), не совпадают с именами аналогичных переменных в определении функции MatrProc1. Очевидно, что совпадения и не требуется, тем более, что у третьего входного фактического параметра нет имени вообще! Чтобы подчеркнуть это возможное отличие, имена входных параметров и выходных значений в определении функции называют формальными.

В рассмотренном примере вызова функции MatrProc1 из двух входных квадратных матриц 2 x 2 получаются две выходные матрицы Res1 и Res2 точно таких же размеров:

Res1 =
9 6
6 6

Res2 =
6 5
5 5

Вызвав функцию

MatrProc1 = MatrProc1([ 1 2 3; 4 5 6 ], [ 7 7 7; 2 2 2 ], 1);

с двумя входными массивами размера 2x3, получим две выходные матрицы размера 2x3. То есть, одна и та же функция MatrProc1 может обрабатывать входные параметры различных размеров и размерностей! Можно вместо массивов применить эту функцию к скалярам (это всё равно массивы размера 1x1).

Теперь рассмотрим вопрос о том, можно ли использовать эту функцию в составе выражений так, как это делается с функциями, возвращающими единственное значение? Оказывается это делать можно, причём в качестве значения функции, применяемого для дальнейших вычислений, используется первое из возвращаемых функцией значений. Следующее окно системы MATLAB иллюстрирует это положение:

При вызове с параметрами 1,2,1 функция MatrProc1 возвращает два значения: 2 и 3. Для использования в составе выражения используется первое из них.

Так как вызов любой функции можно осуществить, написав произвольное выражение в командном окне MATLABа, то всегда можно совершить ошибку, связанную с несовпадением типов фактических и формальных параметров. MATLAB не выполняет никаких проверок на эту тему, а просто передаёт управление функции. В результате могут возникнуть ошибочные ситуации. Чтобы избежать (по-возможности) возникновения таких ошибочных ситуаций, предлагается в тексте M-функций осуществлять проверку входных параметров. Например, в функции MatrProc1 легко осуществить выявление ситуации, когда размеры первого и второго входных параметров различны. Для написания такого кода требуются конструкции управления, которые мы пока ещё не изучали. Самое время приступить к их изучению!

В программе MATLAB вы будете использовать как встроенные функции, так и
Matlab функции, созданные вами.

Встроенные функции

Программа MATLAB имеет много встроенных функций. В их число входят
функции sqrt, cos, sin, tan, log, exp и atan (для функции арктангенс), а также
более специализированные математические функции, такие как gamma, erf и besselj. Программа MATLAB имеет также некоторые встроенные константы,
включая pi (число п), i (комплексное число i = корень(-1)) и Inf (°° - бесконечность). Ниже показано несколько примеров:

Функция log является натуральным логарифмом и во многих текстах называется In.

ans =
0.8660

Функции, задаваемые пользователем

В этом разделе мы проверим два способа задания ваших собственных функций в
программе MATLAB. Первый способ использует команду inline, а второй
использует оператор @, чтобы создать так называемую «анонимную функцию».
Второй метод является новым в программе MATLAB 7, и в настоящее время этому
методу отдается предпочтение. Периодически мы будем упоминать о команде
inline ради пользователей более ранних версий программы. Однако мы
настоятельно рекомендуем пользователям MATLAB 7 и пользователям более ранних
версий, когда они обновят программу, использовать оператор @ в качестве
обычного метода для задания функций. Функции можно также задавать в
отдельных файлах, которые называются М-файлами (см. главу 3).
В этом примере показано, как задается функция f (x) = х 2 с использованием
этих команд.

f =
@ (х) х^2

Можно сделать и по-другому:

f1 = inline ("х^2","х")

f1 =
Inline function:
f1(x) = х^2

Когда функция задана, не важно каким методом, вы можете ее вычислить, например:

Как мы отмечали ранее, большинство функций программы MATLAB могут
оперировать как векторами, так и скалярами. Чтобы быть уверенным, что заданная
вами функция может оперировать с векторами, вставляйте точки перед
математическими операторами.* ./ и.^ Таким образом, чтобы получить векторизованную версию функции f (x) = х 2 , введите строку

или строку

f1 = inline ("x.^2","x")

Теперь мы можем вычислить любую функцию для вектора, например:

ans =
1 4 9 16 25

Используя графические возможности программы MATLAB, вы можете начертить
графики функций f и f1. Это можно сделать несколькими способами, которые
мы рассмотрим в разделе «Графика» далее в этом уроке. В завершении этого
раздела отметим, что функции можно также задавать с двумя или более
переменными. Например, решение любой из этих функций

g = @(x, y) x^2 + y^2; g (1, 2);
g1 = inline ("x^2 + y^2", "x", "y"); g1 (1, 2)

даст ответ 5. Если вместо этого вы зададите функцию следующим образом

g = @(x, y) x.^2 + y.^2;

тогда вы сможете вычислить векторы; таким образом, выполнение следующего
выражения

g (, )

дает значения функции в точках (1, 3) и (2, 4).

Поэтому из выше всего сказанного можно сделать вывод, что вам необходимо просмотреть много дополнительной информации и альтернатив!



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: