Системы связи с обратной связью. Применение каналов с обратной связью


Если имеется возможность применить дополнительный канал между передающим и приёмным пунктами, или такой уже существует, то можно организовать канал обратной связи.

Известно 2 варианта использования канала обратной связи.

1. Системы с информационной обратной связью. В этом случае по каналу обратной связи передается весь переданный пакет с целью его контроля на передающей стороне. Если на передающей стороне пакет совпал, то данные верны. Время увеличивается в 2 раза.

2. Системы с управляющей обратной связью или системы с переспросом. Организуется пакет, в котором используется помехоустойчивое кодирование (только обнаруживает ошибки, но не исправляет). На приёмной стороне по помехоустойчивому коду определяется ошибка. Если ошибка есть, то по каналу обратной связи передается сообщение об ошибке и просьба повторить отправку пакета, то есть по каналу обратной связи идёт только сигнал «повторить» либо «подтверждение приема». Если есть необходимость повторной отправки пакета, то отправка производится.

  1. Связь корректирующей способности кода с кодовым расстоянием. Модуляция с использованием периодической последовательности прямоугольных импульсов.

Степень различия любых двух кодовых комбинаций характеризуется расстоянием между ними по Хэммингу или просто кодовым расстоянием .

Расстояние Хэмминга d выражается числом позиций, в которых кодовые комбинации отличаются одна от другой. Чтобы подсчитать кодовое расстояние между двумя комбинациями двоичного кода, необходимо сложить по модулю два эти комбинации, а затем подсчитать число единиц в сумме. Поясним примерами. Найти расстояние Хэмминга d между кодовыми комбинациями 10101011 и 11111011.

Произведем сложение по модулю два:

Å
01010000 .

При сложении по модулю два переносов нет, сложение производится поразрядно по правилам: 0Å0=0; 0Å1=1; 1Å1=0. Сосчитав число единиц, в сумме получаем d=2.

Для всех возможных комбинаций многоразрядного двоичного кода вводится понятие минимального кодового расстояния . Минимальное расстояние Хэмминга, взятое по всем парам возможных кодовых комбинаций данного кода, называется минимальным кодовым расстоянием .

Минимальное кодовое расстояние d min определяет способности кода обнаруживать и исправлять ошибки, возникающие при передаче данных.

Для создания возможности обнаружения ошибок при передаче поступим следующим образом. В трехразрядном коде для передачи исходной информации будем использовать два разряда, а третий передаваемый разряд для передачи будем формировать по правилу: его значение равно нулю, если число единиц в информационных разрядах, четно, и равно единице, если число единиц в информационных разрядах нечетно.

В результате такого кодирования все множество двоичных трехразрядных кодовых комбинаций разбивается на две группы:

Разрешенные – 000, 011, 101, 110;

Запрещенные – 001, 010, 100, 111.

При передаче формируются и передаются помехоустойчивые кодовые комбинации, в которых число единиц четно. Если принята кодовая комбинация, содержащая нечетное число единиц (одна из запрещенных комбинаций), то можно утверждать, что при передаче произошла ошибка.

Для создания возможности исправления однократной ошибки поступим следующим образом.

В трехразрядном коде под информационный символ отведем один разряд, а два других отведем под избыточные контрольные символы (алгоритм формирования контрольных символов пока не важен). Из всех трехразрядных кодовых комбинаций выберем разрешенными 000 и 111. Тогда при передаче и приеме информации могут возникать следующие ситуации (при возможности возникновения только одной ошибки):

Видно, что все искаженные однократной ошибкой кодовые комбинации можно исправить. Расстояние Хэмминга между разрешенными кодовыми комбинациями для данного случая d min =3.

Хэммингом доказано, что в общем случае для обеспечения кода возможностью исправления ошибок кратности S минимальное расстояние Хэмминга d min должно находится из условия d min ³ 2S+1.

Для кода, позволяющего обнаруживать ошибки кратности r и исправлять ошибки кратности S (r³S), минимальное расстояние Хэмминга выбирается из условия d min ³ r+S+1.

Если код должен обнаруживать двукратные ошибки и исправлять однократные, то d min должно быть равно 4. Поэтому код Хемминга с d min =3 может либо исправлять однократные ошибки, либо только обнаруживать однократные и двукратные ошибки.

  1. Измерение количества информации.

В информатике используются различные подходы к измерению информации. Содержательный подход к измерению информации рассматривается с точки зрения человека, получившего информацию (сообщение). Измерение количества информации не связывают с содержанием сообщения. Количество информации зависит от объема сообщения, но не его содержания. В этом случае более подходит алфавитный подход к измерению информации. Измерение количества информации – это мера уменьшения определенности. 1-бит, такое количество информации содержит сообщение, уменьшающее неопределенность знаний в два раза. Согласно измерению информации, количество информации достигает максимального значения, если события равновероятны, поэтому количество информации такое, сколько несет в себе сообщение. Наиболее просто измерить количество информации в случае , когда все исходы события могут реализоваться с равной долей вероятности.

Теперь рассмотрим алфавитный подход к измерению количества информации. При этом подходе измерения количества информации важно учитывать количество в каждом из знаков дискретного сообщения с последующим подсчетом количества этих знаков в сообщении. Для простоты предположим, что все символы (знаки) появляются в тексте с одинаковой вероятностью. Тогда измерение количества информации будет строиться из того, что все символы «равноправны», значит, и объем информации в каждом из них одинаков. Измерение информации представлено дискретным сигналом. При этом различают следующие подходы измерения информации: структурный (измеряет количество информации простым подсчетом символов); статистический (учитывает вероятность появления сообщений). Есть еще один вид информационного процесса – это семантический. Семантический подход к измерению информации учитывает целесообразность и полезность информации

  1. Теоретические модели каналов связи. Теоремы Шеннона о кодировании для каналов связи (без доказательства). Пропускная способность каналов.

Для анализа информационных возможностей канала по передаче информации принято пользоваться обобщенной информационной моделью канала.

Источник информации создаёт сигналы z , которые после кодирования и модуляции в преобразователе информации 1 превращается в сигналы х и поступают в канал.

Под кодированием (в широком смысле) подразумевается представление сообщений в форме, удобной для передачи по каналу. Операция восстановления сообщения по принятому сигналу называется декодированием. Поскольку информация передаётся в виде сигналов, то сообщению на выходе источника информации необходимо поставить в соответствие определённый сигнал. Поскольку число возможных сообщений при неограниченном времени стремится к бесконечности, а за достаточно большой промежуток времени велико, создать для каждого сообщения свой сигнал невозможно (да и не нужно).

Дискретные сообщения складываются из букв, поэтому используют конечное число образцовых сигналов, соответствующих отдельным буквам алфавита источника. При большом объёме алфавита прибегают к представлению букв в другом алфавите с меньшим числом букв, которые называют символами. Для обозначения этой операции также используется термин кодирование .

Поскольку алфавит символов меньше алфавита букв, то каждой букве соответствует кодовая комбинация. Число символов в кодовой комбинации называется её значностью . Операцию сопоставления кодовой комбинации соответствующей ей буквы называют также декодированием.

Преобразователь информации решает задачи:

1) преобразование информации в такой код, который обеспечивал бы простоту и надёжность аппаратной реализации.

2) кодирование сообщений так, чтобы уменьшить избыточность. Это достигается путём такого кодирования, при котором снижается среднее число символов, требующееся на букву сообщения. Поскольку при отсутствии помех такое кодирование даёт выигрыш во времени передачи или в объёме запоминающего устройства, то оно получило названиеэффективного. Теоретическую основу эффективного кодирования создал Клод Шеннон, который в своей теореме показал возможность создания эффективных кодов.

3) обеспечение помехоустойчивого кодирования как один из вариантов обеспечения заданной достоверности передачи и приёма.

4) модуляция кодированного сигнала. Получаемый на выходе модулятора сигнал подготовлен к передаче по конкретной линии связи.

Сигнал х передаётся по каналу.

В результате действия помех сигнал у на выходе канала будет отличаться от сигнала х. Для удобства принято считать, что помехи создаются неким воображаемым источником помех с определенными статистическими свойствами и поступают в канал в виде мешающего сигнала ξ. По уровню помех и по виду передаваемых сигналов различают:

1)дискретный канал без помех;

2) дискретный канал с помехами;

3) непрерывный канал с помехами.

Каналы позволяют вести передачу с различной максимальной скоростью(пропускной способностью) и требуют различного подхода к передаче данных.

Информация из канала поступает в преобразователь информации 2. Преобразователь информации 2:

Демодулирует поступивший сигнал;

Декодирует помехоустойчивый код;

Распаковывает сжатые данные и в виде сигналов z подаёт информацию к приёмнику.

1

Статья посвящена психологическим и социальным аспектам обратных связей в сфере массовой коммуникации. В ней рассматриваются виды обратных связей, классифицирует системы опосредованного общения в зависимости от степени выраженности и скорости получения обратной связи, определяет психологическую модель речевого общения в сфере масс-медиа. Автор обращается к данным социологии, лингвистики, общей теории информации. Коммуникация при межличностном общении именуется аксиальной (от лат. axis - ось) Учитывая, что тексты масс-медиа направлены множеству аудиторий одновременно, такая коммуникация называется ретиальной (от лат. rete - сеть). Если в печати преобладает линейный вид передачи информации, то на радио и на ТВ преобладает структурный способ («способ фенестрации»), когда одновременно передаются знаки разной семиотической природы. Среда масс-медиа обнаруживает максимальное число звеньев опосредования по сравнению с прямым межличностным речевым общением.

коммуникация

масс-медиа

модели речевой деятельности

семиотические аспекты общения

информационная обратная связь

1. Брудный А. А. Коммуникация и семантика // Вопр. философии. - 1972. - №4. - С. 40-47.

2. Винер Н. Кибернетика. - М.: Наука, 1983. - С. 183-186.

3. Забродин Ю. М., Харитонов А. М. Психологические аспекты передачи информации через каналы коммуникации // Психологические исследо­вания общения: сб. науч. тр. - М., 1985. ─ С. 300-311.

4. Леонтьев А. А. Психология общения. - Тарту: [Тартусский ун-т], 1974. ─ 219 с.

5. Психолингвистические проблемы массовой коммуникации. - М.: Наука, 1974. - 246 с.

6. Философский энциклопедический словарь. ─ М.: Советская энциклопедия, 1983. - С. 447.

Какой вид речевого общения существует в сфере печатных и электронных масс-медиа? В противоположность прямому (межлично-стному или межгрупповому) непосредственному диалогу с явно выра-женной обратной связью и постоянной взаимной сменой ролей между коммуникатором и адресатом общение в сфере масс-медиа является косвенным, опосредованным, в полной мере социальным.

При межличностном общений текст (сообщение) передается строго определенным единичным получателям; такая коммуникация получила название аксиальной (от лат. axis - ось). Тексты масс-медиа направлены множеству аудиторий одновременно, анонимным адреса-там, для которых сообщаемая информация является семантически значимой; такая коммуникация называется ретиальной (от лат. rete - сеть, невод) .

Вопреки распространенному заблуждению, что степень влияния средств массовой информации будто бы зависит от их технической специфики, их эффективность связана прежде всего со спецификой ре-тиальной коммуникации как таковой.

Поскольку ретиальная коммуникация является (в терминах пси-хологии) социально ориентированным общением, тексты масс-медиа не только информируют личность, но и социально ориентируют ее.

Диалектика общения вообще, а речевого ретиального общения в сфере масс-медиа в особенности, делает неадекватным его рассмотре-ние в терминах только одной науки, например, психологии. Поэтому придется в рамках данной работы обращаться к данным социологии, лингвистики, общей теории информации. С другой стороны, именно проблемы эффективности воздействия, связанные с обратной связью (точнее: с отсутствием явно выраженной обратной связи) в масс-медиа с необходимостью обязывают нас строго различать психологический и социологический аспекты анализа.

Следует четко различать психологические (семиотические) эффекты и социальную эффективность деятельности институтов массовой коммуникации. Психологические аспекты текстов масс-медиа, в пер-вую очередь, являются средствами достижения «инструментальных» целей - сохранения и увеличения аудитории, повышения авторитета и популярности отдельных коммуникаторов, каналов, программ и т.п. «Инструментальные» эффекты выражаются в конкретных актах комму-никации в виде непосредственных реакций аудитории на конкретно воспринятые сообщения. Как учесть и измерить эти реакции? Вряд ли современная система подсчета рейтинговых очков каждой передачи да-ет нам адекватное решение обсуждаемой сложной проблемы. Ниже мы пытаемся обосновать неадекватность (суррогатность) рейтинговой сис-темы подсчета в области обратной связи.

Социологическая трактовка системы масс-медиа стремится вый-ти из замкнутой цепи модели «коммуникатор - канал связи - сооб-щение - адресат», определяя масс-медиа как часть системы социаль-ной регуляции общества, как интегрирующий фактор общественного развития и его катализатор. Метод контент-анализа и другие экспери-ментальные методы социологии помогают выделить максимально ин-вариантную структуру информационных и ценностно-нормативных компонентов всего потока текстов масс-медиа, «модель мира», форми-рующую в течение определенного времени представления, убеждения, стереотипы, критерии оценки и эталоны поведения большого числа людей.

Однако социальная эффективность текстов масс-медиа не явля-ется непосредственно управляемой со стороны органов масс-медиа. Она является следствием длительной реализации реальных функций потока сообщений как целостной системы и реализуется, в конечном счете, вне процесса массовой коммуникации в более широкой системе социальной деятельности через механизмы межличностного, группово-го общения и массового поведения.

Еще одно отличие ретиальной коммуникации состоит в резком сокращении диапазона обратных связей, увеличении времени прохож-дения обратной информации; это привело к необходимости организа-ции адекватной сети обратных связей как наиболее актуальной пробле-ме, решение которой как будто бы обеспечит как психологическую, так и социальную эффективность всей текстовой деятельности масс-медиа. Строгая дифференциация психологических и социальных аспектов анализа общения в масс-медиа (о которой шла речь выше) - пер-вое условие решения указанной проблемы.

Другое условие имеет объективный характер: надо преодолеть неоднозначную трактовку самого понятия «обратная связь», возник-шую вследствие перенесения этого понятия в социальные сферы из терминологии технических устройств общей теории информации.

Обратная связь в теории информации понимается как непосред-ственное «обратное воздействие результатов процесса на его протека-ние или управляемого процесса на управляющий орган» . Такой об-ратной связи в масс-медиа не существует, ибо она отсрочена и на сам коммуникативный акт влиять не может. Для таких сложных социаль-ных систем, какой является система масс-медиа, выделить типы обрат-ной связи оказывается нелегко. Возможно, именно по этой причине многие продолжают при анализе общения в сфере масс-медиа пользо-ваться терминологией теории информации. Так поступал А. А. Леонтьев в своих широко известных работах по психологии общения . Он по-лагал, что «почти любое общение» «не является однонаправленным ни с точки зрения структуры коммуникативной сети, ни с точки зрения структуры самого процесса общения» . А. А. Леонтьев рассмат-ривал два вида обратной связи: один - «это скрытая обратная связь», то есть «внутренняя мера» коммуникатора, позволяющая строить фор-му сообщения с учетом предполагаемых и возможных реакций аудито-рии; второй - «специальные каналы» обратной связи, такие, как пись-ма зрителей/слушателей, звонки на радио/теле-студию во время пере-дачи и т.п. Однако сам А. А. Леонтьев, вероятно, уже ощущал иллюзор-ность второго вида обратной связи с точки зрения структуры коммуни-кативной сети, явную нерепрезентативность звонков на студию по от-ношению ко всей массовой аудитории, когда писал далее об отсутствии «специального канала для обратной связи» в масс-медиа . Существование же «скрытой обратной связи» вообще оказывается только гипотетичным для многих типов радио-/теле-передач, например, так называемых «полуподготовленных» и «бестекстовых» в жанре уст-ного прямого (спонтанного) репортажа, интервью и др.

В то же время в модели речевой деятельности, созданной А. А. Леонтьевым, вслед за фазами ориентировки, реализации плана сообще-ния идет обязательная фаза эффективности сообщения, где должна «установиться обратная связь, сигнализирующая говорящему о том, что выбранное им содержание и способы достигли своей цели» . В рамках терминологии теории информации, которой пользуется А. А. Леонтьев, здесь явное противоречие: каким образом «сигнализация» поступает говорящему, если для нее нет «специального канала»? Обратная связь в последней фазе модели речевой деятельности А. А. Леон-тьева вопреки схеме автора не устанавливается именно в психологиче-ском плане, а сама модель для сферы масс-медиа оказывается неадек-ватной.

Так из-за временной, пространственной разорванности акта об-щения психологические реакции аудитории масс-медиа не могут быть учтены коммуникатором во время самого процесса общения (в боль-шинстве случаев). Психологически адресат может воздействовать на речь коммуникатора в пределах протекающего акта общения только потенциально, преимущественно в фазе ориентировки и планирования. Но даже потенциальное приспособление текста к ожидаемым реакциям аудитории в сфере масс-медиа затруднено из-за анонимности аудито-рии и спонтанности устной речи в некоторых видах радио- и телепере-дач. Можно назвать такую форму влияния аудитории на коммуникатора «внутренней», «скрытой», «потенциальной» обратной связью. На пси-хологическом уровне анализа в масс-медиа такой тип обратной связи является единственно возможным.

Психологи Ю. М. Забродин и А. Н. Харитонов когда-то высказали интересную мысль об управлении обратной связью при опосредован-ном общении путем «контролируемого изменения характеристики ме-диаторов» (то есть технических приспособлений и устройств, опосре-дующих общение) . Наличие «медиатора» создает у реципиента принципиальную возможность управления каналом передачи сообще-ния: можно в любой момент прервать чтение, выключить радиоприем-ник или телевизор и т.п. В общении же «лицом к лицу» в обычных ус-ловиях невозможно мгновенно прервать беседу, тем более «выклю-чить» собеседника. Возникает задача классификации медиаторов по их возможности в реализации обратной связи. За точку отсчета принима-ется возможность получения ответа во временных пределах, сравнимых с временем нормальной реакции человека на реплику собеседника в «живом» диалоге.

По степени выраженности и скорости получения обратной связи можно классифицировать системы опосредованного общения следующим образом:

  1. системы, обеспечивающие обратную связь без выраженной за-держки во времени (телефон, видеотелефон, телетайп в варианте дуп-лексной связи);
  2. системы отсроченного общения (почта, телеграф, космическая коммуникация на межпланетные расстояния); обеспечивают обратную связь с четко выраженной задержкой во времени;
  3. системы непрямого общения (литература, кинематограф, изобразительное искусство и пр.); в принципе не рассчитаны на обрат-ную связь, хотя и имеют ее чаще всего в виде оценки; обратная связь может быть значительно (на многие годы) отсрочена во времени.

Система средств масс-медиа занимает в этой классификации особое место. Она использует аппарат обратной связи, обеспечиваемый системами первых двух типов (телефон, почта), а также получает ин-формацию оценочного типа, касающуюся своей деятельности, подобно системам третьего типа. Однако обратная связь в явном виде не высту-пает в качестве основной характеристики системы массовой информа-ции.

Теперь несколько замечаний по поводу обратной связи на со-циологическом уровне анализа. Здесь функционирует так называемая «информационная обратная связь», то есть информация о протекании процесса, на основе которой вырабатывается то или иное управляющее воздействие , но действующая очень медленно. Подобные системы обратной связи существуют в организме высших животных и челове-ка, они характеризуются Н. Винером как гомеостазы . Информаци-онная гомеостатическая обратная связь, отсроченная во времени, - обя-зательное условие оптимального функционирования системы масс-медиа, обеспечения ее социальной эффективности.

В заключение кратко определим психологическую модель рече-вого общения в сфере масс-медиа по четырем группам параметров, на-меченных в свое время А. А. Леонтьевым (см. его работу «Психология общения» - Тарту, 1974): ориентация общения, психологическая дина-мика общения, семиотическая специализация, степень социальной опо-средованности.

По первому параметру: речевое общение в масс-медиа является социально ориентированным по преимуществу, но элементы личност-ной ориентации также присутствуют.

По второму параметру: коммуникатор в масс-медиа учитывает прежде всего социальные роли адресата (ролевое общение). Кроме то-го, автор опирается на институциональный имидж того общественного института (органа печати, программы или канала радио и ТВ), от имени и в структуре которого он выступает.

Что касается семиотического аспекта, то здесь виды масс-медиа сильно отличаются: если в печати преобладает линейный вид передачи информации, то на радио и особенно на ТВ мы имеем дело со струк-турным способом представления информации (в общей теории комму-никации он называется «способ фенестрации», от лат. fenestra - окно), когда одновременно передаются знаки разной семиотической природы - звуки, письменные знаки, изображение. Наконец, среда масс-медиа обнаруживает максимальное число ступеней опосредования по сравне-нию с прямым межличностным речевым общением.

Рецензенты:

  • Щебланова Вероника Вячеславовна, доктор социологических наук, профессор кафедры «Социология, социальная антропология и социальная работа» Саратовского государственного технического университета им. Ю. А.Гагарина, г. Саратов.
  • Шамионов Раиль Мунирович, доктор психологических наук, зав. кафедрой психологии образования Саратовского государственного университета им. Н. Г. Чернышевского, профессор кафедры психологии образования, г. Саратов.

Библиографическая ссылка

Зильберт Б.А. ОБРАТНАЯ СВЯЗЬ В КОММУНИКАТИВНОЙ СФЕРЕ МАСС-МЕДИА // Современные проблемы науки и образования. – 2012. – № 3.;
URL: http://science-education.ru/ru/article/view?id=6425 (дата обращения: 06.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Нередко встречаются случаи, когда информация может передаваться не только от одного корреспондента к другому, но и в обратном направлении. В таких условиях появляется возможность использовать обратный поток информации для существенного повышения верности сообщений, переданных в прямом направлении. При этом не исключено, что по обоим каналам (прямому и обратному) в основном непосредственно передаются сообщения в двух направлениях ("дуплексная связь") и только часть пропускной способности каждого из каналов используют для передачи дополнительных данных, предназначенных для повышения верности.

Возможны различные способы использования системы с обратной связью в дискретном канале. Обычно их подразделяют на два типа: системы с информационной обратной связью и системы с управляющей обратной связью. Системами с информационной обратной связью называются такие, в которых с приемного устройства на передающее поступает информация о том, в каком виде принято сообщение. На основании этой информации передающее устройство может вносить те или иные изменения в процесс передачи сообщения: например, повторить ошибочно принятые отрезки сообщения, изменить применяемый код (передав предварительно соответствующий условный сигнал и убедившись в том, что он принят) либо вообще прекратить передачу при плохом состоянии канала до его улучшения.

В системах с управляющей обратной связью приемное устройство на основании анализа принятого сигнала само принимает решение о необходимости повторения, изменения способа передачи, временного перерыва связи и передает об этом приказание передающему устройству. Возможны и смешанные методы использования обратной связи, когда в некоторых случаях решение принимается на приемном устройстве, а в других случаях на передающем устройстве на основании полученной по обратному каналу информации.

Простейшим по идее методом информационной обратной связи является метод полной обратной проверки и повторения (ОПП). При этом принятый сигнал полностью ретранслируется на передающее устройство, где каждая принятая кодовая комбинация сверяется с переданной. В случае их несовпадения передающее устройство передает сигнал для стирания неправильно принятой комбинации, а затем повторяет нужную комбинацию. В качестве сигнала для стирания применяют специальную кодовую комбинацию, не используемую при передаче сообщения.

Функциональная схема такой системы показана на рис. 5.L Передаваемое сообщение, закодированное примитивным кодом, посылают в канал и одновременно записывают в запоминающем устройстве (накопителе). Принятая кодовая комбинация сразу не декодируется, а запоминается в приемном накопителе и возвращается по обратному каналу на передающий конец, где она сравнивается с переданной комбинацией. Если они совпадают, то передается следующая кодовая комбинация, в противном случае - сигнал стирания.

При этом методе окончательный ошибочный прием кодовой комбинации возможен лишь тогда, когда ошибки в принятой комбинации компенсируются ошибками, возникающими в канале обратной связи. Другими словами, для того чтобы некоторый символ в переданной кодовой комбинации был окончательно принят ошибочно, необходимо и достаточно, чтобы, во-первых, произошла ошибка в прямом канале и, во-вторых, при ретрансляции произошла такая ошибка, которая изменит неправильный ретранслируемый символ на действительно переданный. Это позволяет сразу вычислить вероятность не обнаруженной, а следовательно, и неисправленной ошибки (в расчете на один символ):

р н.о = p 1 p 2 (5.33)

где p 1 - вероятность ошибки в прямом канале; р 2 - вероятность противоположной ошибки в канале обратной связи.

Следовательно, если p 1 и р 2 велики, то система с полной ретрансляцией дает неудовлетворительные результаты. Практически данный метод имеет смысл в тех случаях, когда канал обратной связи обеспечивает весьма высокую верность (например, при передаче сообщений на спутник с Земли), а прямой канал имеет низкую верность (например, при передаче сообщений спутника на Землю ввиду того, что мощность передатчика на спутнике мала). Существенным недостатком системы с полной ретрансляцией является большая загрузка канала обратной связи. Существуют и более сложные системы с информационной обратной связью, в которых используются помехоустойчивые коды.

Наиболее распространены системы с управляющей обратной связью (УОС) при использовании избыточных кодов для обнаружения ошибок (рис. 5.2). Такие системы часто называют системами с переспросом, или с автоматическим запросом ошибок, или с решающей обратной связью (РОС).

В большинстве случаев это системы дуплексные, т. е. информация в них передается в обоих направлениях. В кодере передаваемое сообщение кодируется кодом, позволяющим с большой вероятностью обнаруживать возникающие в канале ошибки. Принятый кодовый блок декодируется с обнаружением ошибок. Если ошибки не обнаружены, то декодированный отрезок сообщения поступает к получателю. При обнаружении ошибок блок бракуется и по обратному каналу передается специальный "сигнал переспроса". В большинстве систем этот сигнал представляет собой специальную кодовую комбинацию, на время передачи которой прерывается поток информации, идущей по обратному каналу. Прием сигнала переспроса вызывает повторение забракованного блока, который для этого хранится в накопителе-повторителе до тех пор, пока по обратному каналу не будет принята очередная кодовая комбинация, не содержащая переспроса.

Система с управляющей обратной связью оказывается весьма эффективной в каналах с переменной вероятностью ошибки р (например, в каналах с замираниями). Когда величина р становится близкой к 1/2, т. е. пропускная способность канала падает почти до нуля, система находится в режиме постоянного переспроса, однако при хорошем коде ложная информация на выход практически не поступает. При уменьшении вероятности ошибки скорость передачи увеличивается, а верность продолжает оставаться на заданном уровне. Таким образом, система УОС как бы адаптируется (приспосабливается) к состоянию канала, используя канал настолько, насколько это оказывается возможным в каждом из его состояний.

В заключение отметим следующий факт, доказываемый в теории информации: в каналах без памяти наличие любой обратной связи не увеличивает пропускной способности прямого канала. Следовательно, если допустимо использование длинных кодов, то обратная связь не даст преимуществ. Однако, как уже указывалось, длинные коды требуют весьма сложных устройств декодирования, которые часто практически не реализуемы. Именно в этом случае может помочь обратная связь, позволяющая реализовать ту же пропускную способность более простыми средствами.

Вопросы к главе 5

  1. По каким признакам можно классифицировать коды?
  2. Источник независимых сообщений имеет в своем алфавите восемь сообщений с вероятностями Р(А) = 0,3; Р(Б) = Р(В) = 0,2; Р(Г) = 0,15; Р(Д) = 0,1; Р(Е) = 0,03; Р(Ж) = Р(И) = 0,01. Вычислите энтропию сообщений, постройте неравномерный код по методу Фено и определите, насколько он близок к оптимальному. Сравните необходимые скорости передачи в канале при коде Фено и при равномерном коде.
  3. Почему короткие помехоустойчивые коды не обеспечивают большой эффективности?
  4. Может ли один и тот же помехоустойчивый код использоваться в системе с обнаружением и в системе с исправлением ошибок?
  5. В двоичном стирающем канале без памяти (см. гл. 3, рис. 3.7) вероятность ошибки p = 0, а вероятность стирания р с >0. Докажите, что код с d > 1 позволяет исправлять в таком канале все стертые символы, если кратность стираний q c Пусть некоторый код А длины n имеет нечетное значение d. Построим новый код В длины n+1, добавив к прежнему коду проверочный символ, равный сумме (по модулю 2) всех остальных символов. Покажите, что при этом d увеличивается на 1.
  6. Покажите, что код В длины n+1, построенный в предыдущей задаче, позволяет исправлять ошибки кратностью q≤d/2-1, т. е. те же, которые исправлял код А и одновременно обнаруживать ошибки кратностью d/2, где d - четное минимальное расстояние кода В.
  7. Какой код является двойственным простейшему коду (n, n-1) с одной проверкой на четность и d = 2? Чему равно d для двойственного кода?
  8. При использовании кода Хэмминга (7,4) с проверочной матрицей (5.24) принята последовательность 1100111. Как она должна быть декодирована по алгоритму Хэмминга? Тот же вопрос, если принята последовательность 1100110? А если 1010001?
  9. Код Хэмминга (3,1) содержит всего две комбинации: 000 и 111. Определите эквивалентную вероятность ошибки при использовании этого кода в симметричном канале с независимыми ошибками, происходящими с вероятностью р.
  10. Тот же код (3,1) используется в несимметричном канале, в котором Р(1→0) = р, Р(0→1) = 0. Предложите разумное правило декодирования и вычислите эквивалентную вероятность ошибки.
  11. В формуле (5.28) выписаны четыре "проверки для символа эквидистантного кода (7,3). Учитывая, что этот код циклический, запишите проверки для b 2 и b 3 и определите, как будут декодированы по мажоритарному алгоритму принятые последовательности 0100110, 0110111, 0101010?
  12. Для двух кодов (6,5) и (4,3) с d = 2 у каждого, составлен итеративный код. Найдите для него n, k и d и покажите, каким образом он позволяет "справлять и обнаруживать ошибки?
  13. * В двоичной системе с информационной обратной связью (ОПП) ошибки независимы и их вероятность в прямом канале pi = 0,l, а в обратном канале р 2 = 10 -5 . Используются 5-разрядные кодовые комбинации. Определите вероятность не обнаруженной ошибки и оцените степень замедления передачи за счет обнаруженных ошибок.
  14. * В условиях вопроса 13 p 1 = 0,5 (т. е. связь по прямому каналу отсутствует), а p 2 = 0. Возможна ли передача информации в этом случае? По формуле (5.33) вероятность не обнаруженной ошибки р н.о = 0. С другой стороны, интуиция подсказывает, что передача информации здесь невозможна. Как объяснить такое противоречие?

Системами передачи дискретной информации с обратной связью (ОС) называют системы, в которых повторение ранее переданной происходит лишь после приема сигнала ОС. Системы с обратной связью делятся на системы с решающей ОС и информационной ОС.

Системы с решающей обратной связью

В приемнике системы правильно принятые комбинации накапливаются в накопителе и, если после приема блока хотя бы одна из комбинаций не будет принята, то формируется сигнал переспроса, единый на весь блок. Повторяется снова весь блок, а в приемнике системы из блока отбираются комбинации, не принятые при первой передаче. Переспросы производятся до тех пор, пока не будет приняты все комбинации блока. После приема всех комбинаций посылается сигнал подтверждения. Получив его, передатчик передает следующий блок комбинаций (системы с адресным переспросом - РОС-АП). Эти системы во многом аналогичны системам с накоплением, но в отличие от последних приемник их формирует и передает сложный сигнал переспроса, в котором указываются условные номера (адреса) не принятых приемником комбинаций блока. В соответствии с этим сигналом, передатчик повторяет не весь блок, как в системе с накоплением, а лишь не принятые комбинации (системы с последовательной передачей кодовых комбинаций - РОС-ПП).

Известны различные варианты построения систем РОС-ПП, основными из которых являются:

Системы с изменением порядка следования комбинаций (РОС-ПП). В этих системах приемник стирает лишь комбинации, по которым решающим устройством принято решение на стирание, и только по этим комбинациям посылает на передатчик сигналы переспроса. Остальные комбинации выдаются в ПИ по мере их поступления.

Системы с восстановлением порядка следования комбинаций (РОС-ПП). От систем РОС-ПП данные системы отличаются лишь тем, что приемник их содержит устройство, восстанавливающее порядок следования комбинаций.

Системы с переменным уплотнением (РОС-ПП). Здесь передатчик поочередно передает комбинации из последовательностей, причем число последних выбирается так, чтобы ко времени передачи комбинаций на передатчике уже был принят сигнал ОС по ранее переданной комбинации этой последовательности.

Системы с блокировкой приемника на время приема комбинаций после обнаружения ошибки и повторением или переносом блока из комбинаций (РОС-ПП).

Системы с контролем заблокированных комбинаций (РОС-ПП). В этих системах после обнаружения ошибки в кодовой комбинации и передачи сигнала переспроса производится контроль на наличие обнаруженных ошибок h -1 комбинаций, следующих за комбинацией с обнаруженной ошибкой.

Системы с информационной обратной связью

Различие в логике работы систем с РОС и ИОС проявляется в скорости передачи. В большинстве случаев передача служебных знаков требуют меньших затрат энергии и времени, чем передача по прямому каналу опознавателей в системе с РОС. Поэтому скорость передачи сообщений в прямом направлении в системе с ИОС больше. Если помехоустойчивость обратного канала выше помехоустойчивости прямого, то достоверность передачи сообщений в системах с ИОС также выше. В случае полной бесшумной информационной обратной связи можно обеспечить безошибочную передачу сообщений по прямому каналу независимо от уровня помех в нем. Для этого надо дополнительно организовать корректировку искажаемых в прямом канале служебных знаков. Такой результат, в принципе, недостижим в системах с РОС распределенного типа. В случае группирующихся ошибок существенную роль играют условия, в которых передаются информационная и контрольная части кодовых комбинаций в обеих системах связи. При использовании ИОС часто имеет место единственная декорреляция ошибок в прямом и обратном каналах.

Важную роль при сравнении передачи сообщений с РОС и ИОС играют также длина используемого кода n и его избыточность s/t. Если избыточность невелика (s/n<0,3), то даже при бесшумном обратном канале ИОС практически не обеспечивает по достоверности преимущества перед РОС. Однако скорость передачи у систем с ИОС по-прежнему выше. Следует указать еще одно преимущество систем с ИОС, обусловленное различием в скорости. Каждому заданному значению эквивалентной вероятности ошибки соответствует оптимальная длина кода, при отклонении от которой скорость передачи в системе с РОС уменьшается. В системах с ИОС при s/n>0,3 передачу сообщений выгоднее вести короткими кодами. При заданной наперед достоверности скорость передачи от этого становится больше. Это выгодно с практической точки зрения, т.к осуществлять кодирование и декодирование при коротких кодах легче. С увеличением избыточности кода преимущество систем с ИОС по достоверности передачи возрастает даже при одинаковых по помехоустойчивости прямом и обратном каналах, особенно если передача сообщений и квитанции в системе с ИОС организована так, что ошибки в них оказываются некорректированными. Энергетический выигрыш в прямом канале системы с ИОС оказывается на порядок выше, чем в системе с РОС. Таким образом, ИОС во всех случаях обеспечивает равную или более высокую помехозащищенность передачи сообщений по прямому каналу, особенно при больших s и бесшумном обратном канале. ИОС наиболее рационально применять в таких системах, где обратный канал по роду своей загрузки может быть без ущерба для других целей использован для эффективной передачи квитирующей информации.

Однако общая сложность реализации систем с ИОС больше, чем систем с РОС. Поэтому системы с РОС нашли более широкое применение. Системы с ИОС применяют в тех случаях, когда обратный канал может быть без ущерба для других целей эффективно использован для передачи квитанций.

Системы связи с обратной связью

Цель лекции: изучение характеристик систем с обратной связью и рассмотрение структурной схемы с ОС.
Содержание:
а) характеристики систем с обратной связью и их особенности;
б) структурная схема системы с информационной обратной связью (ИОС) и решающей обратной связью (РОС), характеристики и алгоритмы работы.
12.1 Характеристики систем с обратной связью и их особенности
В системах с ОС ввод в передаваемую информацию избыточности производится с учетом состояния дискретного канала. С ухудшением состояния канала вводимая избыточность увеличивается, и, наоборот, по мере улучшения состояния канала она уменьшается.
В зависимости от назначения ОС различают системы: с решающей обратной связью (РОС), информационной обратной связью (ИОС) и с комбинированной обратной связью (КОС).
Передача с РОС аналогична телефонному разговору в условиях плохой слышимости, когда один из собеседников, плохо расслышав какое-либо слово или фразу, просит другого повторить их еще раз, а при хорошей слышимости или подтверждает факт получения информации, или, во всяком случае, не просит повторения.
Полученная по каналу ОС информация (квитанция) анализируется передатчиком, и по результатам анализа передатчик принимает решение о передаче следующей кодовой комбинации или о повторении ранее переданных. После этого передатчик передает служебные сигналы о принятом решении, а затем соответствующие кодовые комбинации. В соответствии с полученными от передатчика служебными сигналами приемник ПКпр или выдает накопленную кодовую комбинацию получателю информации, или стирает ее и запоминает вновь переданную. В системах с укороченной ИОС, естественно, меньше загрузка обратного канала, но больше вероятность появления ошибок по сравнению с полной ИОС.

В системах с КОС решение о выдаче кодовой комбинации получателю информации или о повторной передаче может приниматься и в приемнике, и в передатчике системы ПДС, а канал ОС используется для передачи как квитанций, так и решений. Системы с ОС подразделяют также на системы с ограниченным числом повторений и с неограниченным числом повторений. В системах с ограниченным числом повторений каждая кодовая комбинация может повториться не более l раз, и в системах с неограниченным числом повторений передача комбинаций повторяется до тех пор, пока приемник или передатчик не примет решение о выдаче этой комбинации потребителю. При ограниченном числе повторений вероятность выдачи получателю неправильной комбинации больше, но зато меньше потери времени на передачу и проще реализация аппаратуры. Заметим, что в системах с ОС время передачи сообщения не остается постоянным и зависит от состояния канала.
Системы с ОС могут отбрасывать либо использовать информацию, содержащуюся в забракованных кодовых комбинациях, с целью принятия более правильного решения. Системы первого типа получили название систем без памяти, а второго - систем с памятью.
Обратной связью могут быть охвачены различные части системы (рисунок 12.1):
1) канал связи, при этом по каналу ОС передаются сведения о принимаемом сигнале до принятия какого-либо решения;
2) дискретный канал, при этом по каналу ОС передаются решения, принятые первой решающей схемой PC 1 на основе анализа единичных элементов сигнала;
3) канал передачи данных, при этом по каналу ОС передаются решения, принятые второй решающей схемой РС 2 на основе анализа кодовых комбинаций.

Рисунок 12.1 - Обратная связь в системе ПДС
В системах с ИОС также возможны потери верности за счет ошибок в каналах ОС. В укороченных ИОС такие ошибки возникают по причинам, аналогичным вышеизложенным, когда квитанция, соответствующая искаженному сигналу в канале ОС, трансформируется в квитанцию, соответствующую неискаженному сигналу. В результате передатчик не в состоянии обнаружить факт ошибочного приема. В полных ИОС в канале ОС возможны искажения, полностью компенсирующие искажения в прямом канале, в результате чего ошибки не могут быть обнаружены. Поэтому вопросам образования каналов ОС в системах ПДС уделяется очень большое внимание. Каналы ОС обычно образуются в каналах обратного направления связи с помощью методов частотного или временного разделения от каналов передачи полезной информации. Методы ЧРК используют обычно в системах со сравнительно небольшой удельной скоростью передачи, например, при передаче данных со скоростью 600... 1200 бит/с по каналам ТЧ. Во многих системах с РОС применяется структурный метод разделения, когда для сигнала переспроса используется специальная кодовая комбинация, а любая разрешенная кодовая комбинация в приемнике дешифруется как сигнал подтверждения и любая неразрешенная комбинация - как сигнал переспроса. Для защиты от искаженных сигналов, передаваемых по каналам ОС, применяют те же способы, что и для повышения верности полезной информации: корректирующие коды, многократную и параллельную передачи.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: