Беспроводная передача аудиосигнала на колонки. Беспроводная передача аудио сигнала с ПК на колонки с помощью PurePath. На что нужно обращать внимание, покупая беспроводной адаптер для колонок

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, - они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте - солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия - первый слой фотоэлемента, арсенид галлия - второй, арсенид индия-галлия - третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, - свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO - японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день - от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

Наука и технологии не стоят на месте в сфере использования альтернативной энергетики, а использование солнечной энергии в быту и промышленности будет дальше развиваться и совершенствоваться, пытаясь вытеснить традиционные источники энергии. К сожалению, до глобального доминирования гелиоэнергетики пока далеко и виной тому низкий КПД солнечных батарей.

Факторы влияющие на эффективность солнечных батарей

На эффективность работы солнечных батарей влияют объективные и субъективные факторы, такие как:

  • материалы, используемые в изготовлении,
  • технологии,
  • место использования (широта),
  • угол падения солнечных лучей,
  • запыленность и повреждения.

Причем все эти факторы связаны и зависимы между собой по влиянию на КПД солнечных батарей. Но начальным фактором, который определяет КПД является себестоимость изготовления элемента солнечной батареи.

Лидеры энергоэффективности солнечных батарей

Рассмотрим лидеров в изготовлении наиболее эффективных компонентов солнечных панелей и отсортируем по их эффективности:

  • 44,7% КПД от первого из неуниверситетских научно-исследовательских институтов Германии. Результат получен для концентраторов тройного перехода слоев сложного состава полупроводника (Ga 0,35 В 0,65 P / Ga 0,83 В 0,17 As / Ge). Такие солнечные элементы сложны, не используются в жилых или коммерческих целях, потому что они очень дороги. Они используются в космической технике таких производителей, как NASA, где мало пространства.
  • 37,9% эффективности получено из однослойного модуля полупроводникового перехода (InGaP / GaAs / InGaAs). При этом результат получен исключительно для 90° нормали к Солнцу. Эти солнечные элементы также сложны и трудоемки в изготовлении, но их промышленное производство видится более перспективным.
  • 32,6% добились испанские исследователи с института (IES) и университета (UPM). Они использовали мульти-модули из концентраторов с двумя переходами полупроводников. Опять же, эти элементы еще далеки от широкого использования для коммерческих или жилых объектов.

Баланс эффективности солнечных батарей

Есть около десятка крупнейших производителей, выпускающих солнечные батареи со сравнительно неплохим КПД и умеренной стоимостью. Ведущие компании производящие солнечные батареи при самых современных технологиях могут промышленно изготавливать солнечные элементы с эффективностью близкой к 25%. При этом хорошо налажено массовое производство модулей с КПД солнечных батарей, как правило, не превышающих показатель 14-17%. Главной причиной этой разницы в эффективности является то, что методы исследования, используемые в лабораториях, не подходят для коммерческого производства фотоэлектрической продукции и, следовательно, более доступные технологии имеют сравнительно низкие затраты в производстве, что и приводит к понижению показателя КПД в использовании.

Для этого покажем на графике зависимость стоимости готового модуля к стоимости произведенной электроэнергии для технологических серий солнечных батарей с характерными для них показателями КПД.

На сравнительном графике хорошо видна экономическая эффективность солнечных батарей с начальными лабораторными показателями КПД, изготовленных по разным технологиям, в отношении оптимальной стоимости произведенной электроэнергии в 6 центов за кВт-час (3,4 руб/кВт-ч).

Таким образом, самые доступные и недорогие в изготовлении солнечные элементы из аморфного кремния в виде тонкой гнущейся пленки окупают себя при сравнительно небольших размерах, но экономически не эффективны при больших потребностях в электроэнергии. Они широко применяются для переносных зарядок телефонов, светильников и т. д.

Батареи из поликристаллического кремния уже становятся эффективны при применении для жилых домов и небольших теплиц.

Элементы опытных солнечных электростанции изготовлены на основе монокристаллов кремния высокой степени очистки (99,999). Обладают оптимальными показателями эффективности и имеют экономически обоснованный срок окупаемости.

Новейшие научные разработки фотоэлементов, имеющие, самый высокий КПД применяются исключительно в тех отраслях науки и промышленности, где стоимость не является основным критерием выбора.

Применение солнечных батарей все больше входит в различные сферы нашей жизни, но к сожалению, из-за несовершенства технологии производства (и как следствие достаточного низкого КПД) при значительной стоимости не имеет широко применения.

Солнечные батареи - уникальный преобразователь энергии световых лучей в электричество с неограниченным внешним источником. Постоянно растущий спрос на данную продукцию обусловлен доступностью и экологичностью энергоснабжения без расхода теплоносителя, а также экономической окупаемостью за 2 года при минимальном сроке службы панелей в 25 лет.

Основой служат полупроводники или пленочные полимеры, пластина из слоев разной полярности преобразует свет в направленное движение электронов - это физическое явление неизменно для всех солнечных батарей. Вместе с тем такое исполнение ограничивает эффективность фотопреобразователей, часть энергии фотонов неизбежно теряется при прохождении границы p-n перехода. На практике на коэффициент полезного действия батарей влияют многие факторы: материал, площадь, расположение, интенсивность светового потока, что учитывается при покупке и эксплуатации.

Зависимость КПД от вида фотопреобразователей

Данный показатель определяется как процентное отношение вырабатываемой электрической энергии к мощности падающего солнечного света. На величину влияет чистота пластины и ее структура: пленочная, поли- или монокристаллическая. Последние виды относятся к самым дорогим и долго окупаемым, доступные солнечные батареи с высоким КПД для дома пока что производят только из слоев кремния разной полярности. Менее эффективными являются панели из террурида кадмия и CIGS, выпускаемые на основе пленочной технологии. КПД кадмиевых батарей составляет всего 11 %, но они дешевы и достаточно надежны в эксплуатации. Чуть выше показатель у пленки с нанесенными частицами галлия, меди, индия и селена, фотоэлементы CIGS эффективны на 15 %.

Для сравнения: КПД кремниевых преобразователей монокристаллического типа - 25 %, а у тонкопленочных или аморфных субмодулей из того же материала - максимум 10, устройства на основе органических полимеров имеют минимальное значение - 5 %. Многое зависит от площади панели, одиночные фотоэлементы ограничены в генерировании электричества.

Величина КПД маленьких солнечных батарей не позволяет использовать их для полноценного энергоснабжения, но их достаточно для запуска некоторых видов электроники. В любом случае, повышение эффективности устройств и минимизация их себестоимости является приоритетной задачей современной энергетики.

Факторы, влияющие на эффективность солнечных батарей

Коэффициент полезного действия зависит не только от применяемого материала и технологии, но и от целого комплекса внешних условий:

1. Интенсивности светового потока. В свою очередь этот показатель связан с географическими координатами расположенной батареи, в частности - с широтой.

2. Угла наклона конструкции. В идеале следует установить солнечные батареи, меняющие его, исходя из градиента падения лучей. Такая система стоит дороже, но она позволяет аккумулировать внушительное количество электричества (до 40–60 %) и меньше зависеть от сезона и времени суток.

3. Температуры окружающей среды. Нагрев плохо влияет на фотоэффект, вентилируемые батареи имеют очень высокий КПД. Как ни парадоксально, но в морозную ясную погоду они вырабатывают больше энергии, чем в жару (хотя общий кумулятивный эффект снижается из-за короткого светового дня).

4. Времени года. На практике КПД солнечных панелей зимой уменьшается в 2–8 раз, но это не связано с выпадением снега: на темной поверхности он быстро тает, кроме того - фотопреобразователи отлично воспринимают рассеянный свет.

5. Запыленности. Чем чище внешняя часть солнечных батарей, тем большее количество фотонов будет преобразовано, поэтому для повышения КПД рабочие поверхности рекомендуется протирать как минимум раз в два года.

6. Тени. Не секрет, что коэффициент полезного действия для солнечных батарей в пасмурную погоду значительно снижается, в туманных и дождливых районах их нет смысла ставить, то же относится и к затененным участкам. Панели нежелательно монтировать в тени высоких деревьев или соседних домов, при выборе месторасположения приоритет отдается южной стороне.

Рассмотрим вопрос о том, насколько целесообразно устанавливать солнечные батареи для питания загородного дома или даже квартиры. Цены актуальны на весну 2017 года, расчёты выработки батарей для Северо-Западного и Центрального региона России.

Солнечные батареи люди хотят использовать обычно в трёх случаях:

1. Электричества в доме нет вообще, то есть, не подключено городское питание

2. Электричество часто пропадает на несколько часов или даже дней

3. Электричество есть, но хотят экономить

Рассмотрим все три случая. Посмотрим, что нужно для расчёта окупаемости батарей, и насколько вообще они целесообразны в этих трёх случаях.

1. Электричества нет вообще

То есть, городской линии питания нет и не предвидится. Или её подведение стоит очень больших денег, тогда надо оценить, стоит ли вкладываться в солнечную электростанцию или лучше заплатить за подведение линии питания.

Вот общая схема солнечной электростанции. Батареи дают электричество (от 5 до 30 вольт в зависимости от освещённости), контроллер делает из них 12 либо 24 либо 48 вольт, которые заряжают аккумуляторы (один аккумулятор — 12 вольт, два — 24 вольта, 4 -48 вольт или в зависимости от липа их соединения).

Инвертор делает из напряжения аккумуляторов 220 вольт переменного тока и питает нагрузки в доме. Если есть линия городского питания, то инвертор может от неё заряжать аккумуляторы, при отключении питания он мгновенно переключится на генерацию синусоиды 220 вольт.

Нужно определиться с двумя цифрами: максимальное пиковое потребление дома и количество электричества, необходимое в сутки. Пиковое потребление определяет максимальную мощность инвертора, которую он способен дать. А количество электричества (измеряется в киловаттах-часах в сутки) — это основная характеристика, которая нам нужна. Эта цифра определяет, сколько электричества надо получать из батарей. Эту цифру считает электросчётчик.

Возьмём средний маленький дом типа «времянки». Например, холодильник потребляет 100 ватт в час в среднем, работает 24 часа в сутки = 2400 ватт-часов в сутки.

Лампочки потребляют 100 ватт в час, 6 часов в сутки = 600 ватт-часов в сутки.

Телевизор потребляет 100 ватт в час, 6 часов в сутки = 600 ватт-часов в сутки.

Итого получаем 3600 ватт-часов в сутки.

С учётом собственного потребления инвертора и того, что ещё надо зарядить телефон и на пару часов включить ноутбук, получаем 4 киловатта-часа в сутки.

В калькуляторе вводим 4 в поле «средняя нагрузка», выбираем регион и смотрим на кривые выработки и потребления. Возьмём батареи покрупнее (монокристалл, 230 ватт, 6 штук). Видим, что с февраля по сентябрь наша потребность в электричестве почти перекрыта.

Вот мы и подошли к главной проблеме нашего региона — зимой выработка электроэнергии сильно ниже, чем летом. В мае-июне у нас по 8,5 киловатт-часов в сутки электричества, с ноября по февраль — 2-3. То есть, нам надо либо сильно увеличивать количество батарей, чтобы и зимой выработка была достаточной (батареи потянут за собой более мощный контроллер, вся система удорожится), либо зимой использовать генератор (особенно если планируем включать электрообогреватели).

Считаем оборудование для нашей системы «с февраля по сентябрь». Цены весна-лето 2017 года, розничные.

6 батарей по 240 ватт = 12 000 * 6 = 72 000 рублей.

Контроллер (делает из напряжения выхода батарей 12 или 24 вольта). Пусть будет 48-вольтовая система, тогда необходимая мощность контроллера = 240 * 6 /48 = 30 ампер. Хороший контроллер на 30 ампер 48 вольт стоит 35 тысяч.

Инвертор делает из 48 вольт батарей 220 вольт для питания дома. Скажем, у нас максимальная мощность потребления дома не превысит 3 киловатта (чтобы могли чайник включить). Инвертор МАП «Энергия» SIN Pro 48/220В 3.0 квт стоит 47 тысяч.

Аккумуляторы нужны, чтобы накапливать энергию и выдавать, когда нет солнца или ночью. У нас система на 48 вольт, значит, надо минимум 4 12-вольтовых аккумулятора.

Аккумулятор Delta GX12-100 * 4 штуки = 60 тысяч рублей.

Плюс стеллаж металлический для всей техники, предохранитель, УЗИП, специальный кабель большого сечения (это всё надо для защиты системы) = примерно 16 тысяч.

Итого 230 тысяч рублей. С профессиональной установкой, расходными материалами и доставкой — все 260 тысяч рублей.

Вот так считаются солнечные электростанции. Если в нашей времянке больше никакие приборы использоваться не будут, а зимой мы туда не ездим (или не пользуемся холодильником и электрообогревателем), то такая система будет вполне оправдана.

2. Электричество часто пропадает

Пример: основное электричество есть, максимальное потребление дома 5 киловатт. Потребление при отключении электричества (если мы вручную отключим самые мощные нагрузки, оставим необходимое) — 3 киловатта. Отключения электричества возможны на срок до 3 часов.

Берём инвертор МАП «Энергия» SIN Pro 24/220В 6.0 квт = 72 тысячи.

Важная вещь! Один инвертор работает на одну фазу! То есть, если у нас все важные нагрузки висят на одной фазе, то хорошо, ставим инвертор, а если они распределены на все три фазы, тогда надо три инвертора, никуда не деться от этого. Три инвертора по 5 киловатт (как обычно в домах бывает) = 216 000 рублей.

Три часа держим 3 киловатт = 9 киловатт-часов должно быть запасено в аккумуляторах. Солнечные батареи пока вообще не считаем, они за 3 часа мало энергии дадут, особенно не летом или вечером. На них нет надежды, считаем, что аккумуляторы заряжаются от электричества.

9000 ватт-часов / 12 вольт (каждый аккумулятор ведь 12-вольтовый) = 750 ампер-часов. Аккумуляторы разряжаются не в ноль, а до 20% ёмкости. КПД инвертора 93 процента (считается довольно высоким). Итого нам надо запасти в аккумуляторах 1008 ампер-часов энергии.

Берём аккумуляторы по 250 ампер-часов 12 вольт. 4 штуки. Весят они, кстати, по 80 кг каждый. Цена хорошего гелевого аккумулятора со сроком службы 10-12 лет — 34 000 рублей.

Итого инвертор и аккумуляторы = 208 000 рублей. Плюс соединительный кабель, стеллаж, предохранитель = примерно 224 тысячи рублей. Вот полное решение проблемы.

Если электричество будет пропадать часто и надолго, то можно добавить к этой системе солнечные батареи, и в солнечные месяцы они добавят времени автономной работы системы. Либо увеличить количество аккумуляторов вдвое.

Можно также добавить к системе генератор с возможностью запуска по внешнему сигналу. Инвертор, видя, что аккумуляторы почти сели, будет запускать генератор, а после окончания зарядки останавливать его. Это приведёт к тому, что генератор будет работать не весь день, а пару часов в день.

3. Электричество есть, но хотят экономить

Есть такие гибридные инверторы, они дороже обычных, но умеют смешивать электричество из солнечных батарей и из городской сети, уменьшая показания счётчика.

Скажем, мы поставили систему как в пункте 1, но с гибридным инвертором. Скажем, 320 тысяч с установкой.

В калькуляторе внизу видим полную выработку за год, она составит 1958 киловатт-часов. С учётом КПД инвертора — 1821 киловатт-час. Стоимость киловатта-часа электроэнергии в Ленобласти с 1 января 2017 года (дневной тариф) — 3,89 рубля.

Итого мы экономим в год 7084 рубля. Ничего такая экономия.

Срок окупаемости 45 лет. Но срок службы солнечных батарей примерно 25 лет. Аккумуляторов — 10-12 лет. Инвертора — тоже 10-12 лет.

Итого мы получим от такой системы 2 преимущества:

  • при кратковременном отключении электричества дом будет какое-то время (зависит от ёмкости аккумуляторов и потребления дома) продолжать работать. То есть, не надо ставить никаких бесперебойников на технику. А если мы поставим генератор, то не будет пропадания питания на время его пуска (обычно от 30 секунд до 2 минут). Инвертор переключает питание на резервные аккумуляторы почти мгновенно.
  • на доме будут установлены солнечные батареи. Соседи будут видеть, что хозяин дома — приверженец «зелёных» технологий.

Итого, если бы мы жили в Европе, где солнца больше, электричество в разы дороже, а оборудование дешевле (хотя, в этом не уверен), то, наверное, мы бы смогли говорить о том, что к концу своей службы оборудование как раз окупится или подойдёт к этому. Но мы же спасаем природу от негативного влияния электростанций! В Европе это важно. У нас совсем нет. Так что вариант экономии отпадает.

В Европе даже возможен вариант, когда человек получает деньги от поставщика электроэнергии, которую он выдал в общую сеть со своих батарей. У нас продаются счётчики, способные крутиться в обратную сторону, но законодательно такого варианта нет.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: