Свойства машины тьюринга как алгоритма. Мысль — материальна: Алан Тьюринг как «универсальный вычислитель Модель машины тьюринга

Один из важнейших вопросов современной информатики — существует ли формальный исполнитель, с помощью которого можно имитировать любого формального исполнителя. ответ на этот вопрос был получен почти одновременно двумя выдающимися учеными — А. Тьюрингом и Э. Постом. Предложенные ими исполнители отличались друг от друга, но оказалось, что они могут имитировать друг друга, а главное — имитировать работу любого формального исполнителя.

Что такое формальный исполнитель? Что значит — один формальный исполнитель имитирует работу другого формального исполнителя? Если Вы играли в компьютерные игры — на экране объекты беспрекословно подчиняются командам играющего. Каждый объект обладает набором допустимых команд. В то же время компьютер сам является исполнителем, причем не виртуальным, а реальным. Вот и получается, что один формальный исполнитель имитирует работу другого формального исполнителя.

Рассмотрим работу Машины Тьюринга.

Машина Тьюринга представляет собой бесконечную ленту, поделенную на ячейки, и каретку (считывающе-печатающее устройство), которая движется вдоль ленты.

Таким образом Машина Тьюринга формально описывается набором двух алфавитов:

A={a1, a2, a3, …, an} — внешний алфавит, служит для записи исходных данных

Q={q1, q2, q3,…, qm} — внутренний алфавит, описывает набор состояний считывающе-печатного устройства.

Каждая ячейка ленты может содержать символ из внешнего алфавита A = {a0,a1,…,an} (В нашем случае A={0, 1})

Допустимые действия Машины Тьюринга таковы:

1) записать какой-либо символ внешнего алфавита в ячейку ленты (символ, бывший там до того, затирается)

2) сместиться в соседнюю ячейку

3) сменить состояние на одно из обозначенных символом внутреннего алфавита Q

Машина Тьюринга — это автомат, который управляется таблицей.

Строки в таблице соответствуют символам выбранного алфавита A, а столбцы — состояниям автомата Q = {q0,q1,…,qm}. В начале работы машина Тьюринга находится в состоянии q1. Состояние q0 — это конечное состояние, попав в него, автомат заканчивает работу.

В каждой клетке таблицы, соответствующей некоторому символу ai и некоторому состоянию qj, находится команда, состоящая из трех частей
· символ из алфавита A
· направление перемещения: «>» (вправо), «<» (влево) или «.» (на месте)
· новое состояние автомата

В приведенной выше таблице алфавит A ={0, 1, _} (содержит 3 символа), а внутренний алфавит Q={q1, q2, q3, q4, q0}, q0 — состояние, заставляющее каретку остановиться.

Рассмотрим несколько задач решением. Скачать машину Тьюринга Вы можете на сайте в разделе .

Задача 1. Пусть A={0, 1, _}. На ленте в ячейках находятся символы из алфавита в следующем порядке 0011011. каретка находится над первым символом. Необходимо составить программу, которая заменит 0 на 1, 1 на 0 и вернет каретку в первоначальное положение.

Теперь определимся с состояниями каретки. Я называю их — «желания каретки что-то сделать».

q1) Каретка должна пойти вправо: если видит 0 меняет его на 1 и остается в состоянии q1, если видит 1 — меняет его на 0 и остается в состоянии q1, если видит _ — ворачивается назад на 1 ячейку «желает что-то другое», т.е переходит в состояние q2. Запишем наши рассуждения в таблицу исполнителя. Синтаксис смотрите в справке к программе)

q2) Теперь опишем «желание каретки» q2. Мы должны вернуться в первоначальное положение. Для этого: если видим 1 оставляем ее и остаемся в состоянии q2 (с тем же желанием дойти до конца ряда символов); если видим 0 — оставляем его и продолжаем двигаться влево в состоянии q2; видим _ — сдвигается вправо на 1 ячейку. Вот вы оказались там, где требуется в условии задачи. переходим в состояние q0.

Посмотреть работу программы можно на видео:

Задача 2. Дано: конечная последовательность 0 и 1 (001101011101). Необходимо выписать их после данной последовательности, через пустую ячейку, а в данной последовательности заменить их на 0. Например:

Из 001101011101 получим 000000000000 1111111.

Как видите, семь единиц записались после данной последовательности, а на их местах стоят нолики.

Приступим к рассуждениям. Определим, какие состояния необходимы каретке и сколько.

q1) увидел 1 — исправь на нолик и перейди в другое состояние q2 (новое состояние вводится, чтобы каретка не поменяла на нули все единицы за один проход)

q2) ничего не менять, двигаться к концу последовательности

q3) как только каретка увидела пустую ячейку, она делает шаг вправо и рисует единичку, если она видит единичку — то движется дальше, чтобы подписать символ в конце. Как только нарисовал единицу, переходим в состояние q4

q4) проходим по написанным единицам, ничего не меняя. Как только доходим до пустой ячейки, разделяющей последовательность от единиц, переходим с новое состояние q5

q5) в этом состоянии идем начало последовательности, ничего не меняя. Доходим до пустой ячейки, разворачиваемся и переходим в состояние q1

Состояние q0 каретка примет в том случае, когда она пройдет в состоянии q1 до конца данной последовательности и встретит пустую ячейку.

Получим такую программу:

Работу Машины Тьюринга можете посмотреть на видео ниже.

Который, позаимствовав идею у Эмиля Поста, придумал её, как считается, в 1936 году. Несмотря на довольно сложное формальное определение, идея в принципе проста. Чтобы понять её, давайте прогуляемся по страницам Википедии.

Первым делом мы попадаем на страничку, которая, собственно, так и называется: «машина Тьюринга ».

Машина Тьюринга

Машина Тьюринга (МТ) - математическая абстракция, представляющая вычислительную машину общего вида. Была предложена Аланом Тьюрингом в году для формализации понятия алгоритма .

Машина Тьюринга является расширением модели конечного автомата и, согласно тезису Чёрча - Тьюринга , способна имитировать (при наличии соответствующей программы) любую машину, действие которой заключается в переходе от одного дискретного состояния к другому.

В состав Машины Тьюринга входит бесконечная в обе стороны лента , разделённая на ячейки, и управляющее устройство с конечным числом состояний.

Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки символы некоторого конечного алфавита. Выделяется особый пустой символ, заполняющий все клетки ленты, кроме тех из них (конечного числа), на которых записаны входные данные.

В управляющем устройстве содержится таблица переходов , которая представляет алгоритм, реализуемый данной Машиной Тьюринга. Каждое правило из таблицы предписывает машине, в зависимости от текущего состояния и наблюдаемого в текущей клетке символа, записать в эту клетку новый символ, перейти в новое состояние и переместиться на одну клетку влево или вправо. Некоторые состояния Машины Тьюринга могут быть помечены как терминальные , и переход в любое из них означает конец работы, остановку алгоритма.

Машина Тьюринга называется детерминированной , если каждой комбинации состояния и ленточного символа в таблице соответствует не более одного правила, и недетерминированной в противном случае.

Итак, машина Тьюринга - математическая абстракция , умозрительное построение человеческого разума: в природе её нет. Или есть? Сразу приходит на ум, как работает живая клетка . Хотя бы два примера.

1. Для производства белков в клетке с помощью сложно устроенного фермента - РНК-полимеразы - считывается информация с ДНК, своего рода информационной ленты машины Тьюринга. Здесь, правда, не происходит перезапись ячеек самой ленты, но в остальном процесс весьма похож: РНК-полимераза садится на ДНК и двигается по ней в одном направлении, при этом она синтезирует нить РНК - нуклеиновой кислоты, сходной с ДНК. Готовая РНК, отсоединяясь от фермента, несёт информацию к клеточным органеллам, в которых производятся белки.

2. Ещё более похож на машину Тьюринга процесс исправления ошибок в ДНК - её репарация. Здесь ДНК-полимераза вместе с другими белками двигается по ленте ДНК и считывает обе её половинки (геномная ДНК, как известно, представляет собой две переплетенных нити, несущих одну и ту же информацию). Если информация в половинках не совпадает, ДНК-полимераза принимает одну из них за образец и «правит» другую.

Такая аналогия не нова, и в Википедии она тоже описана в статье «Молекулярный компьютер »:

Молекулярный компьютер

Биомолекулярные вычисления или молекулярные компьютеры или даже ДНК - или РНК -вычисления - все эти термины появились на стыке таких различных наук как молекулярная генетика и вычислительная техника.

Биомолекулярные вычисления - это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК-вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты .

Основой всей системы хранения биологической информации, а стало быть, и ДНК-компьютеров, является способность атомов водорода , входящих в азотистые соединения (аденин , тимин , цитозин и гуанин), при определенных условиях притягиваться друг к другу, образуя невалентно связанные пары. С другой стороны, эти вещества могут валентно связываться с сочетаниями молекулы сахара (дезоксирибозы) и фосфата , образуя так называемые нуклеотиды . Нуклеотиды, в свою очередь, легко образуют полимеры длиной в десятки миллионов оснований. В этих супермолекулах фосфат и дезоксирибоза играют роль поддерживающей структуры (они чередуются в цепочке), а азотистые соединения кодируют информацию.

Молекула получается направленной: начинается с фосфатной группы и заканчивается дезоксирибозой. Длинные цепочки ДНК называют нитями, короткие - олигонуклеотидами. Каждой молекуле ДНК соответствует еще одна ДНК - так называемое дополнение Ватсона - Крика . Она имеет противоположную направленность, нежели оригинальная молекула. В результате притяжения аденина к тимину и цитозина к гуанину получается знаменитая двойная спираль, обеспечивающая возможность удвоения ДНК при размножении клетки. Задача удвоения решается с помощью специального белка-энзимы - полимеразы. Синтез начинается только если с ДНК прикреплен кусочек ее дополнения, Данное свойство активно используется в молекулярной биологии и молекулярных вычислениях. По сути своей ДНК + полимераза - это реализация машины Тьюринга , состоящая из двух лент и программируемого пульта управления. Пульт считывает данные с одной ленты, обрабатывает их по некоторому алгоритму и записывает на другую ленту. Полимераза также последовательно считывает исходные данные с одной ленты (ДНК) и на их основе формирует ленту как бы с результатами вычислений (дополнение Ватсона - Крика).

Немножко фантастические перспективы только подогревают наше любопытство. Между тем, мы еще не всё выяснили относительно машины Тьюринга. Как вы помните, в статье из Википедии её назвали расширением конечного автомата. Что же это такое конечный автомат? На него, к счастью, даётся ссылка. Заходя по ней, узнаём, что:

Конечный автомат

Абстрактные автоматы образуют фундаментальный класс дискретных моделей как самостоятельная модель, и как основная компонента машин Тьюринга , автоматов с магазинной памятью , конечных автоматов и других преобразователей информации.

С каждым определением мы всё больше вторгаемся в область чистой математики. Язык становится строже, появляются формальные определения, состоящие из математических символов. Если двигаться дальше, мы придём к теории алгоритмов и теории вычислимости. Путешествовать по страницам Википедии можно долго, но лучше запастись водой и едой, на случай забредания в пустыни аксиом и определений, или хотя бы надёжными ссылками на учебники по математике, например http://www.mccme.ru/free-books/ , или статьи журнала «Потенциал» ;)

Надеюсь, после этого объяснения вам стало немного яснее, что же такое машина Тьюринга?

Давайте вернёмся к истории этого термина.

Итак, как мы уже упоминали, Алан Тьюринг поведал миру о своей машине в 1937 году в так называемом Тезисе Чёрча-Тьюринга. Про Алана Тьюринга - первого хакера и пионера информатики, как написано на мемориальной доске гостиницы, где он родился, поведает нам статья «Алан Тьюринг». Текст статьи полностью приводить здесь не будем, но она и сама по себе не очень подробная.

Алан Тьюринг

Тьюринг, Алан Матисон (23 июня 1912 - 7 июня 1954) - английский математик, логик, криптограф, изобретатель Машины Тьюринга.

В самой статье больше про труды Тьюринга: помимо текста про машину Тьюринга, который мы еще приведем дальше, повествуется о том, что он работал над «проблемой зависания» (Забавно, не так ли? Компьютеров еще не было, и системы Windows тоже, а проблема зависания уже была.); героическая история про то, как Тьюринг взломал код «Энигмы» во время Второй Мировой Войны и тем самым спас Великобританию; факт о том, что он является основателем теории искусственного интеллекта, а также упоминание о знаменитом тесте Тьюринга. Сейчас этот тест уже не так часто используется как завязка научно-фантастического рассказа, однако проблема человеческого в машине всегда останется классикой, как и романы Айзека Азимова и Станислава Лема.

Несмотря на свою старомодность, тест Тьюринга всплыл неожиданным образом в современном мире общения по интернету. К примеру, можно встретить текст диалога двух пользователей ICQ, один из которых является «ботом», и задача - определить, какой именно. Или к Вам может постучаться незнакомый пользователь, возможно, ICQ-робот. Узнаете ли вы его? Изучая теорию, Вы, возможно, сумеете вовремя применить тест Тьюринга и не останетесь обмануты. Начать изучение можно с соответствующей статьи в Википедии, а затем пройтись по ссылкам, приводимым в конце статьи:

Тест Тьюринга

Тест Тьюринга - тест, предложенный Аланом Тьюрингом в 1950 г. в статье «Вычислительные машины и разум» (Computing machinery and intelligence) для проверки, является ли компьютер разумным в человеческом смысле слова.

Судья (человек) переписывается на естественном языке с двумя собеседниками, один из которых - человек, другой - компьютер. Если судья не может надёжно определить, кто есть кто, компьютер прошёл тест. Предполагается, что каждый из собеседников стремится, чтобы человеком признали его. С целью сделать тест простым и универсальным, переписка сводится к обмену текстовыми сообщениями.

Переписка должна производиться через контролируемые промежутки времени, чтобы судья не мог делать заключения исходя из скорости ответов. (Во времена Тьюринга компьютеры реагировали медленнее человека. Сейчас это правило необходимо, потому что они реагируют гораздо быстрее, чем человек).

Тест был инспирирован салонной игрой, в ходе которой гости пытались угадать пол человека, находящегося в другой комнате, путём написания вопросов и чтения ответов. В оригинальной формулировке Тьюринга, человек должен был притворяться человеком противоположного пола, а тест длился 5 минут. Сейчас эти правила не считаются необходимыми и не входят в спецификацию теста.

Тьюринг предложил тест, чтобы заменить бессмысленный, по его мнению, вопрос «может ли машина мыслить?» на более определённый.

Тьюринг предсказал, что компьютеры в конечном счёте пройдут его тест. Он считал, что к 2000 году, компьютер с памятью 1 миллиард бит (около 119 Мб) в ходе 5-минутного теста сможет обмануть судей в 30 % случаев. Это предсказание не сбылось. (Правда, на первом конкурсе Лебнера компьютерная программа «PC Therapist» на IBM PC 386 смогла ввести в заблуждение 5 судей из 10, но ей не засчитали результат, а в 1994 году конкурс усложнили.) Тьюринг также предсказал, что сочетание «мыслящая машина» не будет считаться оксюмороном , а обучение компьютеров будет играть важную роль в создании мощных компьютеров (с чем большинство современных исследователей согласны).

Пока что ни одна программа и близко не подошла к прохождению теста. Такие программы, как Элиза (ELIZA), иногда заставляли людей верить, что они говорят с человеком, как, например, в неформальном эксперименте, названном AOLiza. Но такие «успехи» не являются прохождением теста Тьюринга. Во-первых, человек в таких беседах не имел никаких оснований считать, что он говорит с программой, в то время как в настоящем тесте Тьюринга человек активно пытается определить, с кем он беседует. Во-вторых, документированые случаи обычно относятся к таким чатам, как IRC , где многие беседы отрывочны и бессмысленны. В-третьих, многие пользователи IRC используют английский как второй или третий язык, и бессмысленный ответ программы, вероятно, спишется ими на языковый барьер. В-четвертых, многие пользователи ничего не знают об Элизе и ей подобных программах и не могут распознать совершенно нечеловеческие ошибки, которые эти программы допускают.

Ежегодно производится соревнование между разговаривающими программами, и наиболее человекоподобной, по мнению судей, присуждается приз Лебнера (Loebner). Есть дополнительный приз для программы, которая, по мнению судей, пройдёт тест Тьюринга. Этот приз ещё не присуждался.

Самый лучший результат в тесте Тьюринга показала программа A.L.I.C.E. выиграв тест 3 раза (в 2000, 2001 и 2004).

Ссылки

  • Тьюринг А. М. Вычислительные машины и разум. // В сб.: Хофштадер Д., Деннет Д. Глаз разума. - Самара: Бахрах-М, 2003. - С. 47-59.
  • Книга на английском: Roger Penrose «The Emperor’s New Mind».
  • Статья Алана Тьюринга:
    • Alan Turing, «Computing Machinery and Intelligence», Mind, vol. LIX, no. 236, October 1950, pp. 433-460.
    • В сети:
  • Статья Дж. Оппи (G. Oppy) и Д. Дави (D. Dowe) о тесте Тьюринга из Стэнфордской Философской Энциклопедии (на английском)
  • «Turing Test: 50 Years Later» обзор 50-летней работы над тестом Тьюринга, с точки зрения 2000 г. (на английском).

Возвращаемся опять к машине Тьюринга. В выдержке из статьи про Алана Тьюринга утверждается, что впервые понятие машины Тьюринга было предложено в составе т. н. тезиса Чёрча-Тьюринга:

Выдержка из статьи Википедии «Алан Тьюринг»

Любая интуитивно вычислимая функция является частично вычислимой, или, эквивалентно, может быть вычислена с помощью некоторой машины Тьюринга.

Алан Тьюринг высказал предположение (известное как Тезис Чёрча-Тьюринга), что любой алгоритм в интуитивном смысле этого слова может быть представлен эквивалентной машиной Тьюринга. Уточнение представления о вычислимости на основе понятия машины Тьюринга (и других эквивалентных ей понятий) открыло возможности для строгого доказательства алгоритмической неразрешимости различных массовых проблем (то есть проблем о нахождении единого метода решения некоторого класса задач, условия которых могут варьироваться в известных пределах). Простейшим примером алгоритмически неразрешимой массовой проблемы является так называемая проблема применимости алгоритма (называемая также проблемой остановки). Она состоит в следующем: требуется найти общий метод, который позволял бы для произвольной машины Тьюринга (заданной посредством своей программы) и произвольного начального состояния ленты этой машины определить, завершится ли работа машины за конечное число шагов, или же будет продолжаться неограниченно долго.

В статье под названием «Те́зис Чёрча-Тью́ринга» про него пишут так:

Те́зис Чёрча-Тью́ринга

Те́зис Чёрча-Тью́ринга - фундаментальное утверждение для многих областей науки, таких, как теория вычислимости , информатика , теоретическая кибернетика и др. Это утверждение было высказано Алонзо Чёрчем и Аланом Тьюрингом в середине 1930-х годов.

В самой общей форме оно гласит, что любая интуитивно вычислимая функция является частично вычислимой , или, эквивалентно, может быть вычислена с помощью некоторой машины Тьюринга .

Тезис Чёрча-Тьюринга невозможно строго доказать или опровергнуть, поскольку он устанавливает «равенство» между строго формализованным понятием частично вычислимой функции и неформальным понятием «интуитивно вычислимой функции».

Физический тезис Чёрча-Тьюринга гласит: Любая функция, которая может быть вычислена физическим устройством, может быть вычислена машиной Тьюринга .

С этого перекрёстка можно двинуться в сторону, к примеру, теории вычислимости. А можно попытаться выяснить, кто такой этот загадочный Чёрч, вместе с которым Алан Тьюринг выдвинул свой тезис.

Универсальная машина Тьюринга

Универсальной машиной Тью́ринга называют машину Тьюринга , которая может заменить собой любую машину Тьюринга. Получив на вход программу и входные данные, она вычисляет ответ, который вычислила бы по входным данным машина Тьюринга, чья программа была дана на вход.

Формальное определение

Программу любой детерминированной машины Тьюринга можно записать, используя некоторый конечный алфавит, состоящий из символов состояния, скобок, стрелки и т. п.; обозначим этот машинный алфавит как Σ 1 {\displaystyle \Sigma _{1}} . Тогда универсальной машиной Тьюринга U для класса машин с алфавитом Σ 2 {\displaystyle \Sigma _{2}} и k входными лентами называется машина Тьюринга с k+1 входной лентой и алфавитом Σ 1 ∪ Σ 2 {\displaystyle \Sigma _{1}\cup \Sigma _{2}} такая, что если подать на первые k лент входное значение, а на k+1 - правильно записанный код некоторой машины Тьюринга , то U выдаст тот же ответ, какой выдала бы на этих входных данных M 1 {\displaystyle M_{1}} , или будет работать бесконечно долго, если M 1 {\displaystyle M_{1}} на этих данных не остановится.

Теорема об универсальной машине Тьюринга утверждает, что такая машина существует и моделирует другие машины с не более чем квадратичным замедлением (то есть если исходная машина произвела t шагов, то универсальная произведёт не более ct 2 ). Доказательство у этой теоремы конструктивное (такую машину несложно построить, надо только аккуратно её описать). Теорема была предложена и доказана Тьюрингом в 1936-37 г.

Программная реализация на языке программирования Delphi достаточно проста. С одной из таких реализаций можно ознакомиться на сайте http://kleron.ucoz.ru/load/24-1-0-52 . Предусмотрена возможность загрузки и сохранения в файл Excel.

Недетерминированная машина Тьюринга

Вероятностная машина Тьюринга

Обобщение детерминированной машины Тьюринга, в которой из любого состояния и значений на ленте машина может совершить один из нескольких (можно считать, без ограничения общности - двух) возможных переходов, а выбор осуществляется вероятностным образом (подбрасыванием монетки).

Вероятностная Машина Тьюринга похожа на недетерминированную машину Тьюринга, только вместо недетерминированного перехода машина выбирает один из вариантов с некоторой вероятностью.

Существует также альтернативное определение:

Вероятностная машина Тьюринга представляет собой детерминированную машину Тьюринга, имеющую дополнительно аппаратный источник случайных битов, любое число которых, например, она может «заказать» и «загрузить» на отдельную ленту и потом использовать в вычислениях обычным для МТ образом.

Класс алгоритмов, завершающихся за полиномиальное время на вероятностной машине Тьюринга и возвращающих ответ с ошибкой менее 1/3, называется классом BPP .

Один из важнейших вопросов современной информатики — существует ли формальный исполнитель, с помощью которого можно имитировать любого формального исполнителя. ответ на этот вопрос был получен почти одновременно двумя выдающимися учеными — А. Тьюрингом и Э. Постом. Предложенные ими исполнители отличались друг от друга, но оказалось, что они могут имитировать друг друга, а главное — имитировать работу любого формального исполнителя.

Что такое формальный исполнитель? Что значит — один формальный исполнитель имитирует работу другого формального исполнителя? Если Вы играли в компьютерные игры — на экране объекты беспрекословно подчиняются командам играющего. Каждый объект обладает набором допустимых команд. В то же время компьютер сам является исполнителем, причем не виртуальным, а реальным. Вот и получается, что один формальный исполнитель имитирует работу другого формального исполнителя.

Рассмотрим работу Машины Тьюринга.

Машина Тьюринга представляет собой бесконечную ленту, поделенную на ячейки, и каретку (считывающе-печатающее устройство), которая движется вдоль ленты.

Таким образом Машина Тьюринга формально описывается набором двух алфавитов:

A={a1, a2, a3, …, an} — внешний алфавит, служит для записи исходных данных

Q={q1, q2, q3,…, qm} — внутренний алфавит, описывает набор состояний считывающе-печатного устройства.

Каждая ячейка ленты может содержать символ из внешнего алфавита A = {a0,a1,…,an} (В нашем случае A={0, 1})

Допустимые действия Машины Тьюринга таковы:

1) записать какой-либо символ внешнего алфавита в ячейку ленты (символ, бывший там до того, затирается)

2) сместиться в соседнюю ячейку

3) сменить состояние на одно из обозначенных символом внутреннего алфавита Q

Машина Тьюринга — это автомат, который управляется таблицей.

Строки в таблице соответствуют символам выбранного алфавита A, а столбцы — состояниям автомата Q = {q0,q1,…,qm}. В начале работы машина Тьюринга находится в состоянии q1. Состояние q0 — это конечное состояние, попав в него, автомат заканчивает работу.

В каждой клетке таблицы, соответствующей некоторому символу ai и некоторому состоянию qj, находится команда, состоящая из трех частей
· символ из алфавита A
· направление перемещения: «>» (вправо), «<» (влево) или «.» (на месте)
· новое состояние автомата

В приведенной выше таблице алфавит A ={0, 1, _} (содержит 3 символа), а внутренний алфавит Q={q1, q2, q3, q4, q0}, q0 — состояние, заставляющее каретку остановиться.

Рассмотрим несколько задач решением. Скачать машину Тьюринга Вы можете на сайте в разделе СКАЧАТЬ .

Задача 1. Пусть A={0, 1, _}. На ленте в ячейках находятся символы из алфавита в следующем порядке 0011011. каретка находится над первым символом. Необходимо составить программу, которая заменит 0 на 1, 1 на 0 и вернет каретку в первоначальное положение.

Теперь определимся с состояниями каретки. Я называю их — «желания каретки что-то сделать».

q1) Каретка должна пойти вправо: если видит 0 меняет его на 1 и остается в состоянии q1, если видит 1 — меняет его на 0 и остается в состоянии q1, если видит _ — возвращается назад на 1 ячейку «желает что-то другое», т. е. переходит в состояние q2. Запишем наши рассуждения в таблицу исполнителя. Синтаксис смотрите в справке к программе)

q2) Теперь опишем «желание каретки» q2. Мы должны вернуться в первоначальное положение. Для этого: если видим 1 оставляем ее и остаемся в состоянии q2 (с тем же желанием дойти до конца ряда символов); если видим 0 — оставляем его и продолжаем двигаться влево в состоянии q2; видим _ — сдвигается вправо на 1 ячейку. Вот вы оказались там, где требуется в условии задачи. переходим в состояние q0.

Посмотреть работу программы можно на видео:

Задача 2. Дано: конечная последовательность 0 и 1 (001101011101). Необходимо выписать их после данной последовательности, через пустую ячейку, а в данной последовательности заменить их на 0. Например:

Из 001101011101 получим 000000000000 1111111.

Как видите, семь единиц записались после данной последовательности, а на их местах стоят нолики.

Приступим к рассуждениям. Определим, какие состояния необходимы каретке и сколько.

q1) увидел 1 — исправь на нолик и перейди в другое состояние q2 (новое состояние вводится, чтобы каретка не поменяла на нули все единицы за один проход)

q2) ничего не менять, двигаться к концу последовательности

q3) как только каретка увидела пустую ячейку, она делает шаг вправо и рисует единичку, если она видит единичку — то движется дальше, чтобы подписать символ в конце. Как только нарисовал единицу, переходим в состояние q4

q4) проходим по написанным единицам, ничего не меняя. Как только доходим до пустой ячейки, разделяющей последовательность от единиц, переходим с новое состояние q5

q5) в этом состоянии идем начало последовательности, ничего не меняя. Доходим до пустой ячейки, разворачиваемся и переходим в состояние q1

Состояние q0 каретка примет в том случае, когда она пройдет в состоянии q1 до конца данной последовательности и встретит пустую ячейку.

Получим такую программу:

Работу Машины Тьюринга можете посмотреть на видео ниже.

Маши́на Тью́ринга (МТ) - абстрактный исполнитель (абстрактная вычислительная машина). Была предложена Аланом Тьюрингом в 1936 году для формализации понятия алгоритма .

Машина Тьюринга является расширением конечного автомата и, согласно тезису Чёрча - Тьюринга , способна имитировать все другие исполнители (с помощью задания правил перехода), каким-либо образом реализующие процесс пошагового вычисления, в котором каждый шаг вычисления достаточно элементарен.

Устройство машины Тьюринга

В состав машины Тьюринга входит бесконечная в обе стороны лента (возможны машины Тьюринга, которые имеют несколько бесконечных лент), разделённая на ячейки, и управляющее устройство , способное находиться в одном из множества состояний . Число возможных состояний управляющего устройства конечно и точно задано.

Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки ленты символы некоторого конечного алфавита. Выделяется особый пустой символ, заполняющий все клетки ленты, кроме тех из них (конечного числа), на которых записаны входные данные.

Управляющее устройство работает согласно правилам перехода , которые представляют алгоритм, реализуемый данной машиной Тьюринга. Каждое правило перехода предписывает машине, в зависимости от текущего состояния и наблюдаемого в текущей клетке символа, записать в эту клетку новый символ, перейти в новое состояние и переместиться на одну клетку влево или вправо. Некоторые состояния машины Тьюринга могут быть помечены как терминальные , и переход в любое из них означает конец работы, остановку алгоритма.

Машина Тьюринга называется детерминированной , если каждой комбинации состояния и ленточного символа в таблице соответствует не более одного правила. Если существует пара «ленточный символ - состояние», для которой существует 2 и более команд, такая машина Тьюринга называется недетерминированной .

Описание машины Тьюринга

Конкретная машина Тьюринга задаётся перечислением элементов множества букв алфавита A, множества состояний Q и набором правил, по которым работает машина. Они имеют вид: q i a j →q i1 a j1 d k (если головка находится в состоянии q i , а в обозреваемой ячейке записана буква a j , то головка переходит в состояние q i1 , в ячейку вместо a j записывается a j1 , головка делает движение d k , которое имеет три варианта: на ячейку влево (L), на ячейку вправо (R), остаться на месте (N)). Для каждой возможной конфигурации имеется ровно одно правило. Правил нет только для заключительного состояния, попав в которое машина останавливается. Кроме того, необходимо указать конечное и начальное состояния, начальную конфигурацию на ленте и расположение головки машины.

Пример машины Тьюринга

Приведём пример МТ для умножения чисел в унарной системе счисления . Машина работает по следующему набору правил:

Набор правил

Набор правил

q 0 ×→q 1 ×R

q 6 ×→q 7 ×R

q 2 ×→q 3 ×L

q 3 1 → q 4 aR

q 4 ×→q 4 ×R

Умножим с помощью МТ 3 на 2 в единичной системе:

В протоколе указаны начальное и конечное состояния МТ, начальная конфигурация на ленте и расположение головки машины (подчёркнутый символ).

Полнота по Тьюрингу

Основная статья : Полнота по Тьюрингу

Можно сказать, что машина Тьюринга представляет собой простейшую вычислительную машину с линейной памятью, которая согласно формальным правилам преобразует входные данные с помощью последовательности элементарных действий .

Элементарность действий заключается в том, что действие меняет лишь небольшой кусочек данных в памяти (в случае машины Тьюринга - лишь одну ячейку), и число возможных действий конечно. Несмотря на простоту машины Тьюринга на ней можно вычислить всё, что можно вычислить на любой другой машине, осуществляющей вычисления с помощью последовательности элементарных действий. Это свойство называется полнотой .

Один из естественных способов доказательства того, что алгоритмы вычисления, которые можно реализовать на одной машине, можно реализовать и на другой, - это имитация первой машины на второй.

Имитация заключается в следующем. На вход второй машине подаётся описание программы (правил работы) первой машины D и входные данные X , которые должны были поступить на вход первой машины. Нужно описать такую программу (правила работы второй машины), чтобы в результате вычислений на выходе оказалось то же самое, что вернула бы первая машина, если бы получила на вход данные X .

Как было сказано, на машине Тьюринга можно имитировать (с помощью задания правил перехода) все другие исполнители, каким-либо образом реализующие процесс пошагового вычисления, в котором каждый шаг вычисления достаточно элементарен.

На машине Тьюринга можно имитировать машину Поста , нормальные алгоритмы Маркова и любую программу для обычных компьютеров, преобразующую входные данные в выходные по какому-либо алгоритму. В свою очередь, на различных абстрактных исполнителях можно имитировать Машину Тьюринга. Исполнители, для которых это возможно, называются полными по Тьюрингу (Turing complete).

Есть программы для обычных компьютеров, имитирующие работу машины Тьюринга. Но следует отметить, что данная имитация неполная, так как в машине Тьюринга присутствует абстрактная бесконечная лента. Бесконечную ленту с данными невозможно в полной мере имитировать на компьютере с конечной памятью (суммарная память компьютера - оперативная память, жёсткие диски, различные внешние носители данных, регистры и кэш процессора и др. - может быть очень большой, но, тем не менее, всегда конечна).

Варианты машины Тьюринга

Модель машины Тьюринга допускает расширения. Можно рассматривать машины Тьюринга с произвольным числом лент и многомерными лентами с различными ограничениями. Однако все эти машины являются полными по Тьюрингу и моделируются обычной машиной Тьюринга.

Машина Тьюринга, работающая на полубесконечной ленте

В качестве примера такого сведения рассмотрим следующую теорему: Для любой машины Тьюринга существует эквивалентная машина Тьюринга, работающая на полубесконечной ленте.

Рассмотрим доказательство, приведённое Ю. Г. Карповым в книге «Теория автоматов». Доказательство этой теоремы конструктивное, то есть мы дадим алгоритм, по которому для любой машины Тьюринга может быть построена эквивалентная машина Тьюринга с объявленным свойством. Во-первых произвольно занумеруем ячейки рабочей ленты МТ, то есть определим новое расположение информации на ленте:

Затем перенумеруем ячейки, причём будем считать, что символ «*» не содержится в словаре МТ:

Наконец, изменим машину Тьюринга, удвоив число её состояний, и изменим сдвиг головки считывания-записи так, чтобы в одной группе состояний работа машины была бы эквивалентна её работе в заштрихованной зоне, а в другой группе состояний машина работала бы так, как исходная машина работает в незаштрихованной зоне. Если при работе МТ встретится символ ‘*’, значит головка считывания-записи достигла границы зоны:

Начальное состояние новой машины Тьюринга устанавливается в одной или другой зоне в зависимости от того, в какой части исходной ленты располагалась головка считывания-записи в исходной конфигурации. Очевидно, что слева от ограничивающих маркеров «*» лента в эквивалентной машине Тьюринга не используется.

Решил растолковать человечеству принцип алгоритмических вычислений. Дело в том, что мистер Тьюринг являлся пророком компьютерной эпохи, поэтому попросту не мог не поведать людям о том, что такое алгоритм. Вот и придумал абстрактную машину, которую назвали его именем. То бишь фамилией. Но давайте-ка по порядку...

Суть простыми словами

Следует сразу обозначить важный момент: машина Тьюринга - исключительно умозрительное устройство. В природе ничего подобного не существует. Компьютерные модели, правда, есть. Даже действующие. Но они - не более чем модели.

Почему так? Потому что предмет обсуждения представляет собой бесконечную ленту, полноценное физическое существование которой на данном этапе развития науки и техники возможно исключительно теоретически.

Лента состоит из ячеек, как цепь из звеньев. В ячейках записаны данные , например, символы алфавита. Ну, или нули и единицы . В общем, что-нибудь пригодное для автоматической обработки. Таковая выполняется движущейся частью машины.

Как это функционирует

Движущаяся часть - устройство чтения и записи. Какая-нибудь штуковина, способная считывать содержимое ячеек, записывать в них что-нибудь своё и, главное, действовать в соответствии с получающимися результатами.

Причём, автомат может за один раз перемещаться только на одну ячейку. Вправо, влево, куда надо для выполнения вычислений. Здесь что-то приплюсовал - надо передвинуться, чтобы что-то отнять. А потом - опять сложить. И так сколь угодно долго, пока задача не будет выполнена. Лента ведь бесконечная, вариантов хватит для любых операций.

Собственно говоря, Алан Тьюринг как раз и стремился подчеркнуть, что каждое вычисление, каким бы сложными ни было, можно выполнять поэтапно, шаг за шагом, разбив задачу на элементарные составляющие. В этом и заключается суть алгоритма .

Разные варианты

Посмотрели начинающие кибернетики на машину Тьюринга и уразумели, что придраться не к чему. Действительно, компьютерные программы следует строить на основе алгоритмов - пошагового исполнения инструкций.

Вместе с тем, слава Алана Тьюринга многим не давала покоя, и последователи начали, как говорится, ловить её отблески. Начали выдумывать многомерные машины Тьюринга, с множеством лент, «полубесконечные» etc.

Мы же попытаемся внести в этот хаос хоть какую-то ясность и рассмотрим всамделишные варианты обсуждаемого устройства.

  1. Недетерминированная - это такая машина Тьюринга, которая действует на вышеописанной ленте с ячейками в соответствии с ситуацией, возникающей на том или ином этапе вычислений. Куда ей надо, туда и двинется, иными словами.
  2. Детерминированная - такая, в которую заложены конкретные инструкции. Например, если в ячейке, где находится исполняющий автомат, записана буква А, то надо передвинутся в соседнюю, с буквой Б, хочется того или нет.
  3. Полная - способная вычислить вообще всё, что можно вычислить пошаговыми операциями. Может даже смоделировать машину в машине, эмулятор, описывающий алгоритмами работу другого аналогичного устройства.
  4. Универсальная - умеющая всё, что умеют какие угодно варианты машины Тьюринга. Вообще любые, даже ещё не придуманные. Конечно, является полной.

Практическая польза

Конечно, алгоритм - понятие более сложное, нежели просто передвижение исполнения по шагам в одномерном пространстве. Ведь возможны ветвления, зацикливания, возвращения назад, задействование подпрограмм.

Кроме того, смоделировать бесконечное множество ячеек, содержащих данные, невозможно на практике хотя бы потому, что возможности компьютерного оборудования ограничены.

Тем не менее, есть программы, имитирующие машину Тьюринга, предназначенные для обучения студентов. Начинающим программистам предлагается разработать разные алгоритмы, например, ищущие, меняющие, добавляющие, переставляющие в ячейках буквы.

Следовательно, польза от машины Тьюринга именно такая, какая и была задумана её создателем, пророком компьютерной эпохи: наглядная демонстрация сути алгоритмических вычислений.

Предыдущие публикации:

Последнее редактирование: 2013-04-01 10:58:05

Метки материала: ,



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: