Объектно-ориентированный подход к моделированию информационных систем. Методологии моделирования предметной области

ArCon. Дизайн интерьеров и архитектурное моделирование для всех Кидрук Максим Иванович

Объектно-ориентированное моделирование

Общепринятой философией в большинстве современных графических систем при создании чертежей на компьютере является использование наипростейших геометрических примитивов: точек, отрезков и дуг. С помощью различных комбинаций перечисленных примитивов, посредством присвоения их геометрическим свойствам определенных значений (имеются в виду координаты характерных точек, длины, радиусы и т. п.), а также с помощью заложенных в программу команд редактирования пользователь может создавать сколь угодно сложное изображение. Вы можете возразить, что практически в любой графической системе присутствует также еще множество команд для построения, скажем, кривых Безье или NURBS-кривых. Однако пускай это не вводит вас в заблуждение: на аппаратном уровне все эти кривые и сплайны все равно переводятся в последовательный набор отрезков, аппроксимирующих реальную кривую (то есть максимально приближенных к действительному положению кривой). Примерно таков же подход в трехмерном твердотельном моделировании: сложный объемный объект создается посредством последовательных комбинаций различных базовых трехмерных фигур (куба, сферы, конуса, тора и т. п.), а также с использованием базовых формообразующих операций (выдавливание, вращение, булева операция и пр.).

В большинстве случаев такой подход вполне устраивает пользователей, поскольку позволяет формировать изображения и модели фактически любых форм. Однако за это приходится расплачиваться временем, потраченным на освоение функциональных возможностей графической системы, в равной степени как и временем на создание каждого такого чертежа или трехмерной модели. Плата, в сущности, не так и велика, однако в скором времени такой подход перестал устраивать пользователей. Причиной тому в первую очередь следует считать тот факт, что при проектировании пользователь создает модель или изображение реального (пускай еще и не существующего) материального объекта. Любой такой объект реального мира наделен вполне определенными свойствами, которые не всегда можно передать через изображение обычного чертежа или 3D-модель. Надо заметить, что такая возможность с развитием средств, а соответственно и требований в проектировании была бы далеко не лишней. Именно это и послужило толчком, заставившим отдельных разработчиков пойти немного другим путем, в результате чего и был придуман объектный подход.

При объектно-ориентированном моделировании пользователь оперирует не простейшими геометрическими примитивами, а конкретными объектами. К примеру, при построении плана этажа какого-либо здания теперь вместо точек, отрезков и дуг используются стены, окна, двери, отдельные помещения и т. п. Каждый такой объект наделен определенным набором свойств, которые задаются (или же присваиваются по умолчанию) при создании объекта и хранятся в файле документа вместе с изображением чертежа или геометрией трехмерной модели. Для окон эти свойства могут включать габаритные размеры и описание формы окна (прямоугольное, полукруглое, в форме арки или любой другой формы), оптические свойства застекления, материал и текстура рамы. Для стен – толщина, длина и высота стены, материал стены, текстура внешней и внутренней поверхности, факт наличия окон или дверей на данной стене, а также ссылки на объекты, соответствующие этим окнам или дверям.

При трехмерном моделировании 3D-сцена также строится из отдельных объектов, которые система предлагает пользователю на выбор. К примеру, если определенная программа предназначается для моделирования дизайна жилых комнат или коммерческих помещений, то база данных такой программы может быть представлена набором различной мягкой или офисной мебели, шкафов, столов и пр. Каждый трехмерный объект интерьера также владеет специфическими свойствами, позволяющими модифицировать его в определенных пределах (изменять цвет, конфигурацию, подбирать материал и другие свойства).

Применение объектного подхода дает множество преимуществ.

На порядок возрастает скорость создания планов и чертежей.

Чертеж или модель становятся более информативными: при выделении (или редактировании) того или иного объекта вы можете легко определить (заменить) его свойства, причем большинство этих свойств, как правило, на обычном чертеже или модели не смогут быть отображены.

База данных объектов иногда наполняется не просто произвольными, ранее заготовленными, а вполне реальными объектами (к примеру, реально существующие экземпляры мебели от различных фирм, материалы от конкретных производителей и т. п.). В таких случаях в программе обязательно приводятся адреса фирм-поставщиков и производителей, по которым вы сразу после завершения проработки проекта можете обратиться и заказать необходимые материалы и прочие объекты.

Объекты легко изменять и модифицировать, при этом программа отслеживает правильность задания значений определенных свойств (к примеру, вы не сможете создать окно, больше, чем габариты стены, на которой оно размещено). Это облегчает работу и позволяет избегать неумышленных ошибок.

Построенная модель (чертеж) может быть представлена в виде иерархического дерева (рис. 1.1), что облегчает навигацию по проекту, поиск и редактирование его отдельных частей.

Рис. 1.1. Пример иерархического представления строительного плана, созданного на основе объектного подхода

Примечание

Иерархическое представление – далеко не новость в автоматизированном проектировании. Однако в данном случае узлами дерева являются не отдельные части графического изображения, которые, как правило, неинформативны и не несут никакой смысловой нагрузки, а конкретные объекты, разделенные по определенному признаку.

Одним из главных, но вовсе не очевидных преимуществ объектно-ориентированного подхода при создании графических изображений является возможность быстрого и полностью автоматического перехода к трехмерному изображению (другими словами, возможность автоматической генерации трехмерной модели спроектированного объекта). С учетом того, что набор объектов, которыми может оперировать пользователь, в любом случае ограничен, а также учитывая то, что в свойствах каждого объекта можно заложить достаточно информации, чтобы получить полное представление о его форме, становится возможным реализация «поднятия» графического изображения в 3D без каких-либо усилий со стороны пользователя (именно такой подход и реализован в системе ArCon). В итоге пользователь почти мгновенно получает трехмерное представление своего проекта, при этом не затратив практически никаких усилий. Полученную трехмерную модель далее можно будет визуализировать и получить реалистичную картинку или передать в другую систему для дальнейшего редактирования или проведения инженерных расчетов. Более того, в таком случае пользователю вообще не нужно никаких специальных навыков трехмерного моделирования.

Примечание

На это свойство следует обратить больше внимания, поскольку генерация трехмерной модели по чертежам давно является камнем преткновения для всех разработчиков инженерных графических систем. В действительности на практике реализован прямо противоположный принцип – генерация чертежа (по существу – проекции 3D-модели) по готовой модели. Попытка реализовать обратное действие (переход из двухмерного изображения в 3D) имела место в некоторых известных CAD-системах (в частности, в SolidWorks), однако успешной ее назвать сложно. На двухмерное изображение налагаются слишком жесткие ограничения, что не позволяет применять заявленный функционал повсеместно. Объектный подход предоставляет возможность получения завершенной трехмерной модели, конечно, с учетом специфики конкретных объектов.

Несмотря на большое количество преимуществ, перечисленных выше, объектно-ориентированный подход имеет и недостатки.

В первую очередь (и это очевидно) это ограниченность набора готовых объектов, а также невозможность произвольного их изменения. Это отбирает гибкость у программы, из чего следует, что принцип объектного проектирования может быть применен только в специализированных системах (таких, к примеру, как ArCon, Professional Home Design Platinum и пр.). Разработчикам таких систем необходимо основательно учитывать специфику отрасли, для автоматизации и решения задач которой предназначается программный продукт, а также максимально расширять возможность настройки свойств предлагаемых объектов.

Здесь на первый план выходит вопрос стоимости и функционала системы. Если вы на 100 % уверены в том, что та или иная специализированная программа подходит для ваших целей, сомнений при ее покупке не должно возникать. В противном случае вам необходимо более подробно изучить функционал, чтобы убедиться, можно ли будет решать поставленные задачи или же, в худшем случае, придется потратить деньги на «обычный» и дорогой CAD-редактор.

Вторым недостатком объектно-ориентированных графических инженерных систем является проблема интеграции с другими графическими системами. Речь идет не о каких-либо проблемах при передаче данных – обмен как двухмерной, так и трехмерной информацией давно уже считается стандартом для любых коммерческих программ. Суть проблемы заключается как раз в потере значений свойств объектов, а также всех иерархических связей, выстроенных между объектами. Причина понятна: система, в которую планируется экспортировать проект, может не поддерживать объектного подхода или же иметь у собственных объектов список свойств, отличный от данного. По этой причине при сохранении проекта из программы ArCon в какой-либо другой формат (не ArCon-объект) экспортируется только графическое изображение.

Примечание

Забегая наперед, скажу, что проекты ArCon+ 2005 можно экспортировать в различные как двухмерные, так и трехмерные форматы, используя группу команд Файл? Экспортировать в формате (рис. 1.2). Важно отметить, что в программе поддерживаются такие известные форматы обмена данных, как VRML, DXF, формат системы 3ds Max, а также возможность сохранения проекта в выполнимый EXE-файл (подробнее об этом написано далее).

Рис. 1.2. Поддерживаемые форматы для экспорта проектов из ArCon

Еще хуже дело обстоит с импортом данных из других систем. Если они не приведены к определенному формату, «взять» их внутрь объектной специализированной системы невозможно. Скажем, при импорте чертежа из AutoCAD в ArCon может быть загружено лишь изображение. При этом ArCon никак самостоятельно не сможет распознать, где в открытом изображении окна, двери, стены и т. п., и тем более присвоить отдельным объектам вполне разумные свойства. Это значит, что дальнейшее редактирование чертежа в ArCon, как и «поднятие» его в 3D, невозможно. Импортирование, по существу, становится бессмысленным, поэтому преимущественное большинство объектно-ориентированных проектных систем не имеют функций для чтения графических данных извне.

Однако, несмотря на такие существенные недостатки, легкость в работе, а главное – скорость и наглядность выполнения проектов берут верх. Как следствие, в последнее время системы, подобные рассматриваемой в этой книге программе ArCon, нашли широкое применение при решении различных задач проектирования.

Из книги Питон - модули, пакеты, классы, экземпляры. автора Бройтман Олег

Объектно-ориентированное программирование Питон - объектно-ориентированный язык со множественным наследованием. Можно сказать, что Питон поддерживает классическую ОО-модель с некоторыми особенностями. Классы в Python могут иметь статические переменные, разделяемые

Из книги 3ds Max 2008 автора Верстак Владимир Антонович

Объектно-ориентированное моделирование 3ds Max 2008 – объектно-ориентированная программа, то есть все, что создается в программе, является объектами. Геометрия, камеры и источники света на сцене – это объекты. Объектами также являются модификаторы, контроллеры, растровые

Из книги Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ автора Мейерс Скотт

Глава 6 Наследование и объектно-ориентированное проектирование Объектно-ориентированное программирование (ООП) существует почти 20 лет, поэтому, вероятно, вы имеете некоторое представление о наследовании, производных классах и виртуальных функциях. Даже если вы

Из книги Основы объектно-ориентированного программирования автора Мейер Бертран

Объектно-ориентированное конструирование ПО У нас уже накоплено достаточно оснований, чтобы попытаться определить ОО-конструирование ПО. Это будет лишь первый набросок, более конкретное определение последует в следующей лекции.ОО-конструирование ПО (определение 1)

Из книги Программирование на языке Ruby [Идеология языка, теория и практика применения] автора Фултон Хэл

Конструирование объектно-ориентированного ПО Мы уже давали определение конструирования ОО-ПО: будучи весьма общим, оно представляет метод следующим образом: "основывать архитектуру всякой программной системы на модулях, полученных из типов объектов, с которыми

Из книги VBA для чайников автора Каммингс Стив

1.1. Введение в объектно-ориентированное программирование Прежде чем начать разговор о самом языке Ruby, неплохо было бы потолковать об объектно-ориентированном программировании вообще. Поэтому сейчас мы вкратце рассмотрим общие идеи, лишь слегка касаясь

Из книги Программирование для карманных компьютеров автора Волков Владимир Борисович

Из книги Основы программирования на Java автора Сухов С. А.

11.1. Рутинные объектно-ориентированные задачи Of his quick objects hath the mind no part, Nor his own vision holds what it doth catch… Вильям Шекспир. Сонет 113 Если вы вообще не знакомы с ООП, то эта глава вас ничему не научит. А если вы понимаете, что такое ООП в языке Ruby, то, наверное, ее и читать не стоит.

Из книги C++ для начинающих автора Липпман Стенли

Объектно-ориентированное программирование и VBA В результате своей эволюции Visual Basic превратился в (почти) объектно-ориентированный язык программирования. Хотя освоение приемов работы с объектами и представляет некоторую трудность в начале знакомства с VBA, ожидаемая

Из книги автора

Глава 12. Объектно-ориентированное программирование. В этой главе...~ Концептуализация объектов~ Понимание свойств, методов и событий - главных компонентов VBA-объектов~ Работа с объектными моделями~ Использование форм как объектов~ Выяснение и установка свойств объектов~

Из книги автора

Объектно-ориентированное программирование Абстракция, наследование, полиморфизм, инкапсуляцияГоворя об ООП (объектно-ориентированном программировании), нельзя обойти стороной эти четыре базовых понятия. Поэтому ниже будет приведено их краткое описание.Абстракция –

Из книги автора

ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ НА JAVA 7. КЛАССЫ Базовым элементом объектно-ориентированного программирования в языке Java является класс. В этой главе Вы научитесь создавать и расширять свои собственные классы, работать с экземплярами этих классов. Напомним,

Из книги автора

2.4. Объектно-ориентированный подход Вспомним спецификацию нашего массива в предыдущем разделе. Мы говорили о том, что некоторым пользователям может понадобиться упорядоченный массив, в то время как большинство, скорее всего, удовлетворится и неупорядоченным. Если

Из книги автора

Процедурно-ориентированное программирование В части II были представлены базовые компоненты языка С++: встроенные типы данных (int и double), типы классов (string и vector) и операции, которые можно совершать над данными. В части III мы увидим, как из этих компонентов строятся

Из книги автора

V. Объектно-ориентированное программирование Объектно-ориентированное программирование расширяет объектное программирование, вводя отношения тип-подтип с помощью механизма, именуемого наследованием. Вместо того чтобы заново реализовывать общие свойства, класс

Из книги автора

17.1.1. Объектно-ориентированное проектирование Из чего складывается объектно-ориентированное проектирование четырех рассмотренных выше видов запросов? Как решаются проблемы их внутреннего представления?С помощью наследования можно определить взаимосвязи между

7. Геометрическое моделирование. Виды систем моделирования. Внутреннее представление моделей.

Геометрическое моделирование.

Можно выделить 2 задачи:

1.Построение геометрической модели уже существующего тела.

2.Синтез геометрической модели нового объекта.

При решении 1-ой задачи требуется задание большого количества точек, принадлежащих поверхности объекта. При решении 2-ой задачи геометрическое моделирования, выполняемого в интерактивном режиме основное требование к средствам формирования и представления геометрической модели – удобство манипулирования моделью. Выделяют 3 вида геометрических моделей: каркасные, поверхностные, твёрдотельные.

Каркасная модель представляет собой мн-во вершин и мн-во рёбер, объединяющих данные вершины.

Поверхностная модель: вначале создается трёхмерный каркас, на который затем “натягиваются” различные виды математических поверхностей. Системы поверхностного моделирования поддерживают различные виды поверхностей: линейчатые поверхности, кинематические поверхности и скульптурные поверхности. Над поверхностями можно проводить следующие операции: обрезание пов-сти другой пов-стью или пространственной кривой на поверхности, построение гладких переходов или скруглений между пов-стями.

Преимущество поверхностного моделирования: можно создавать геом. объекты любой степени сложности.

Недостаток: пов-сти не имеют толщины, а реальные объекты представляют собой некий замкнутый объём.

Поверхностная модель объекта представляет собой “скорлупу”, внутри которой пустота, из-за этого возникают проблемы при разбиении объекта на конечные элементы при просчёте масс-инерционных хар-к и при контроле взаимопроникновения деталей в сборке. Поверхностного моделирование явл. Кропотливым процессом – требует знаний по начерт.геом. и развитого пространственного мышления.

Твёрдотельная модель строится из базовых элементов с использованием соответствующих операций: булевы операции, выталкивание, вращение, лофтинг, разделение твёрдых тел. САПР допускает следующие доп. операции:

построение скруглений, построение отверстий на гранях, построение рёбер жёсткости, построение фасок.

Твёрдотельная модель хранится в САПР в виде дерева построения.

Преимущество твёрдотельного моделирования:

1.Простота параметризации.

2.Возможность расчёта масс-инерционных хар-к и разбивка на сетку конечных элементов.

3.Относительная простота моделирования.

Недостаток: ограниченность конструктивных форм создаваемых моделей.

Стр-ры данных, используемые для описания объемных тел, обычно делятся на три типа в зависимости от того, какие тела ими описываются.

1 стр-ра представляет собой дерево , опис-щее историю прим-я булевских операций к примитивам. Журнал операций называется конструктивным пред­ставлением объемной геометрии (Constructive Solid Geometry CSG representation ). Дерево называется деревом CSG (GSG tree ).

2 стр-ра содержит сведения о границах объема (вершинах, ребрах, гранях и их соединении друг с другом). Это представление называется граничным представлением (boundary representation – В- rep ), а структура данных – структурой B - rep (B - rep data structure ).

Третья структура представляет объем в виде комбинации элементар­ных объемов (например, кубов). Можно придумать множество моделей разложе­ния, выбирая разные элементарные объемы, но ни одна из них не может точно описать объемное тело.

Моделирование - один из основных методов познания, который очается в выделении из сложного явления (объекта) некоторых чаcтей и нении их другими объектами, более понятными и удобными для ания, объяснения и разработки.

Модель - реальный физический объект или процесс, теоретическое х>ение, упорядоченный набор данных, которые отражают некоторые енты или свойства изучаемого объекта или явления, существенные с и зрения моделирования.

Математическая модель модель объекта, процесса пли явления. ставляющая собой математические закономерности, с помощью которых аны основные характеристики моделируемого объекта, процесса или

Геометрическое моделирование раздел математического

моделирования позволяет решать разнообразные задачи в двумерном, трехмерном и. в общем случае, в многомерном пространстве.

Геометрическая модель включает в себя системы уравнений и алгоритмы их реализации. Математической основой построения модели являются уравнения, описывающие форму и движение объектов. Все многообразие геометрических объектов является комбинацией различных примитивов ■ простейших фигур, которые в свою очередь состоят из графических элементов - точек, линий и поверхностей.

В настоящее время геометрическое моделирование успешно используется в управлении и других областях человеческой деятельности. Можно выделить две основные области применения геометрического моделирования; проектирование и научные исследования.

Геометрическое моделирование может использоваться при анализе числовых данных. В таких случаях исходным числовым данным ставится в соответствие некоторая геометрическая интерпретация, которая затем анализируется, а результаты анализа истолковываются в понятиях исходных данных.

Этапы геометрического моделирования:

Постановка геометрической задачи, соответствующая исходной прикладной задаче или ее части:

Разработка геометрического алгоритма решения поставленной задачи;

Реализация алгоритма при помощи инструментальных средств:

Анализ и интерпретация полученных результатов. Методы геометрического моделирования:

Аналитический:

Графический;

Графический, с использованием средств машинной графики:

Графоаналитические методы.

Графоаналитические методы основываются на разделах вычислительно!! геометрии, таких как теория R-функций. теория поверхностей Кунса. теория кривых Безье, теория сплайнов и др.

Для современных научных исследований характерно использование, наряду с двумерными и трехмерными, многомерных геометрических моделей (физика элементарных частиц, ядерная физика и т.д.).

8. Графические языки высокого уровня.

Имеется два подхода к построению систем программирования с языками машинной геометрии и графики высокого уровня. Первый подход состоит в создании автономного языка, второй – в необходимой модификации того или иного исходного алгоритмического языка.

Первый подход позволяет создать язык, наиболее соответствующий специфике работы с графической и геометрической информацией, но только в том классе приложений, для которых предназначался язык. Исторически основная область приложений таких языков:

    автоматизация программирования для оборудования с ЧПУ;

    системы автоматизации проектно-конструкторских работ, требующие средств работы с данными, отсутствующих в широко распространенных алгоритмических языках;

    системы геометрического моделирования.

Одним из первых проблемно-ориентированных языков, имеющих средства для описания геометрической информации, явился язык АРТ (AUTOMATED PROGRAMMING TOOLS). Этот язык послужил основой для разработки разнообразных систем автоматизации программирования для станков с ЧПУ.

В качестве примеров систем с автономным языком высокого уровня могут также служить системы геометрического моделирования трехмерных тел – COMPAC и СИМАК-Д.

Система COMPAC (COMPUTER ORIENTED PART CODING) предназначена для формирования описания объемных тел из объемных элементов формы – (метод конструктивной геометрии). Кроме трех базовых объемных элементов (кубы, цилиндры, конусы), могут использоваться профилированные детали, получаемые перемещением замкнутого контура вдоль прямой или дуги, а также тела вращения, получаемые вращением замкнутого контура вокруг оси. Элементы задаются, позиционируются и оразмериваются языковыми конструкциями, напоминающими АРТ. Составление детали из объемных элементов производится с помощью операций объединения, вычитания и отсечения.

Отличия СИМАК-Д от COMPAC состоят в несколько ином входном языке и ином наборе базовых элементов формы, включающем в себя точку, плоскость, прямоугольный параллелепипед, круговые цилиндры и конус.

Автономные графические языки, как всякая специализированная разработка, обладают высокой эффективностью в своей области приложений, однако разработка и использование таких языков сопряжена с рядом проблем:

    довольно значительные затраты на создание языка и транслятора с него;

    затраты на внедрение, на включение языка в работающую систему программирования и на обучение пользователей, которые не всегда охотно берутся за изучение еще одного языка, а предпочитают пользоваться процедурными расширениями известных им алгоритмических языков: ALGOL, FORTRAN, PL-1, PASCAL и т.д.;

    трудности с последующим расширением языка;

    известные в настоящее время языки машинной геометрии и графики, в отличие от процедурных расширений, как правило, не обеспечивают интерактивного режима, а предназначены для написания пассивных программ;

    затруднено объединение в рамках одной прикладной программы графических и геометрических действий и обычных вычислений, которое легко реализуется в случае процедурных расширений.

9. Объектно-ориентированное моделирование.

Объектно-ориентированное моделирование (feature - based modeling ) позволяет конструктору создавать объемные тела, используя привычные элементы форм (features ). Созданное тело несет в себе информацию об этих элементах в допол­нение к информации об обычных геометрических элементах (вершинах, ребрах, гранях и др.). Например, конструктор может давать команды типа «сделать от­верстие такого-то размера в таком-то месте» или «сделать фаску такого-то раз­мера в таком-то месте», и получившаяся фигура будет содержать сведения о на­личии в конкретном месте отверстия (или фаски) конкретного размера. Набор доступных в конкретной программе элементов формы зависит от спектра приме­нения этой программы.

Большинством систем объектно-ориентированного моделирования поддержива­ются такие элементы, которые используются при изготовлении деталей: фаски, отверстия, скругления, пазы, выемки и т. д. Такие элементы называются произ­водственными , поскольку каждый из них может быть получен в результате кон­кретного процесса производства. Например, отверстие создается сверлением, а выемка – фрезерованием. Следовательно, на основании сведений о наличии, размере и расположении производственных элементов можно попытаться авто­матически сформировать план технологического процесса. Автоматическое пла­нирование технологического процесса, если оно будет разработано на практиче­ском уровне, перебросит мост между CAD и САМ, которые в настоящий момент существуют отдельно друг от друга. Таким образом, в настоящий момент лучше моделировать объекты, подобные изображенному на рис. 5.20, с использованием команд объектно-ориентированного моделирования «Выемка» и «Отверстие», а не просто булевских операций. Модель, созданная при помощи таких команд, облегчит планирование технологического процесса, если не сделает его полно­стью автоматическим. Использование производственных элементов в моделиро­вании иллюстрирует рис. 5.21.

Один из недостатков объектно-ориентированного моделирования заключается в том, что система не может предоставить все элементы, нужные для всех возмож­ных приложений. Для каждой задачи может потребоваться свой набор элементов. Чтобы исключить этот недостаток, большинство систем объектно-ориентирован­ного моделирования поддерживают какой-либо язык, на котором пользователь при необходимости может определять свои собственные элементы. После опре­деления элемента необходимо задать параметры, указывающие его размер. Эле­менты, как и примитивы, могут быть разного размера, а задаются размеры пара­метрами в момент создания элемента. Создание элементов разного размера путем присваивания различных значений соответствующим параметрам является раз­новидностью параметрического моделирования.

Дисциплина «Лингвистическое и программное обеспечение САПР» (Беспалов В.А.)

    Понятие автоматизации проектирования и его лингвистического обеспечения

    Базовое и управляющее лингвистическое обеспечение.

    Организация диалога в САПР, средства обеспечения диалогового режима.

    Принципы организации трансляторов.

    Обобщенная структура компилятора.

    Синтаксический анализатор.

    Языки проектирования и программирования.

    Основы теории языков и формальных грамматик.

    Способы записи синтаксиса языка. Организация лексического анализа.

    Принципы работы лексических и синтаксических анализаторов.

    Понятие автоматизации проектирования и его лингвистического обеспечения.

Автоматизация проектирования характеризует любую деятельность в рамках которой ЭВМ находит применение для выполнения трудоемких расчетов, организации поиска и хранения информации, геометрического моделирования и графического отображения результатов, а так же редактирования документации с целью разработки анализа и видоизменения изделий и процессов. Автоматизация проектирования реализуется с помощью САПР.

ЛО САПР – совокупность языков, терминов, определений, необходимых для выполнения автоматизированного проект-я. ЛО имеет место наряду с: техническим, математическим, информационным, программным, методическим и организационным обеспечением САПР. Основу ЛО САПР составляют спец. языковые средства (языки проектирования), предназначенных для описания процедур автоматизир. пр-я и проектных решений. Обычно они наз-ся проблемно-ориентированными языками (ПОЯ). 2 вида построения ПОЯ:

1. Описание любой задачи путем применения терминов физического и функционального содержания. Переход к программам реализуется с помощью транслятора.

2. ПОЯ соединяет в себе средства алгоритмического языка со специальными языковыми средствами моделирования геометрических объектов.

ПОЯ представляет из себя комплексы лингвистических и программных средств, кот. должны включать след. элементы:

    набор терминальных символов ПОЯ

    интерпретатор ПОЯ

    средства синтаксического анализа

    средства пакетирования директив

    библиотеки базовых функций ПОЯ

интерфейс для связи с СУБД

Интерпритатор- программа или устройство, осуществляющее пооператорную трансляцию и выполнение исходной программы.

Макропроцессор- программа, обеспечивающая замену одной последовательности символов другой.

    Базовое и управляющее лингвистическое обеспечение.

Лингвистическое обеспечение хорошо развитых САПР можно разделить на две относительно обособленные части – базовую и управляющую , связь между которыми осуществляется при помощи специализированных языковых процессоров-компиляторов, интерпретаторов и т. п.

Базовое лингвистическое обеспечение является языковой основой программного обеспечения САПР и состоит в основном из действующих языков программирования, с помощью которых в комплексе средств САПР, реализуются вычислительные и моделирующие процедуры обобщенного алгоритма проектирования, а также обеспечивается решение сервисных задач.

Управляющее лингвистическое обеспечение состоит из специализированных проблемно-ориентированных языков, которые описывают обобщенный алгоритм проектирования в терминах проектных операций, процедур и задач. В этих языках формируются словарь, синтаксис и семантика, существенно связанные с конкретной предметной областью проектирования. Создание и применение проблемно-ориентированных языков позволяет организовать высокоэффективный и эргономичный процесс управления автоматизированным проектированием. В частности, появляется возможность для осуществления диалогового взаимодействия проектировщика и комплекса технических средств САПР, приближенного к естественному речевому запрос-ответному режиму проектирования.

Как правило, запросы обобщенного алгоритма проектирования, даже на уровне проектных операций с их промежуточными результатами, требуют комплексного осуществления разнообразных вычислительных и моделирующих процедур, т. е. системного приведения в действие целого ряда элементов и фрагментов базового лингвистического и программного обеспечения САПР. Таким образом, языкам управляющей части лингвистического обеспечения должна соответствовать определенная система агрегирования

... » Рассматриваются вопросы построения подсистемы САПР метеорологической поддержки (МП... практических занятий по дисциплине «концепции современного... интеллектуального анализа данных. Интеллектуальный анализ, параллельные алгоритмы, интеллектуальный ...

  • Курс лекций по дисциплине «Теория информационных процессов и систем» для студентов ВлГУ, обучающихся по направлению 230400. 62 Информационные системы и технологии

    Документ

    Рядом САПРов , которые... Подсистема контроля качества 2. Подсистема управления технологическим процессом 3. Подсистема ... развития естественнонаучных дисциплин (таковы дифференциальное... осуществляющим информационную и интеллектуальную поддержку выработки...

  • Аннотация к рабочей программе дисциплины «Математическая логика и теория алгоритмов» по направлению 230100. 62 Информатика и вычислительная техника

    Документ

    Файлов. 11. Программы САПР , их графические возможности. ... программных средств интеллектуальных систем. Краткое содержание дисциплины . Искусственный интеллект... . Функциональные подсистемы АСОИУ: структура функциональной подсистемы , функциональные...

  • Учебное пособие по дисциплине 1722 «Проектирование асоиу» по специальности 230102 Автоматизированные системы обработки информации и управления Факультет ит

    Анализ

    Системы имитируют интеллектуальные процессы обработки... проектирования (САПР ) - предназначены... Подсистема маркетинга Производственные подсистемы Финансовые и учетные подсистемы Подсистема ... поддерживать удобную дисциплину сопровождения, модификации...

  • Понятие объектно-ориентированного моделирования (ООМ), безусловно, связано с объектно-ориентированным программированием (ООП). Этот подход к разработке программных средств, появившийся в средине 1980-х гг., первоначально был направлен на разрешение проблем, возникающих в результате неизбежного роста и усложнения программ, а также задач обработки данных и манипулирования ими. В то время стало очевидным, что традиционные методы процедурного программирования нс способны справиться ни с растущей сложностью программ и их разработки, ни с необходимостью повышения их надежности. При этом вычислительные и расчетно-алгоритмические задачи, особенно в области обеспечения бизнеса, постепенно стали уходить на второй план, а первое место стали занимать задачи именно обработки данных и манипулирования ими.

    Фундаментальными понятиями ООП являются понятия класса и объекта. При этом под классом понимается некоторая абстракция совокупности объектов , которые имеют общий набор свойств и обладают одинаковым поведением. Каждый объект в этом случае рассматривается как экземпляр соответствующего класса. Объекты, которые не имеют полностью одинаковых свойств или не обладают одинаковым поведением, по определению, не могут быть отнесены к одному классу. Хотя приведенное определение класса может быть уточнено на основе учета других понятий ООП, оно является общим и достаточным для проведения ООМ.

    Важная особенность классов состоит в возможности их организации в виде некоторой иерархической структуры, которая по внешнему виду напоминает схему классификации понятий формальной логики. В связи с этим следует отметить, что каждое понятие в логике имеет объем и содержание. Под объемом понятия понимают все другие мыслимые понятия, для которых исходное понятие может служить определяющей категорией или частью. Содержание же понятия составляет совокупность всех его признаков и атрибутов, отличающих данное понятие от всех других. В формальной логике известен закон обратного отношения: если содержание понятия А содержится в содержании понятия В, то объем понятия В содержится в объеме понятия А.

    Иерархия понятий строится следующим образом. В качестве наиболее общего понятия или категории берется понятие, имеющее наибольший объем и, соответственно, наименьшее содержание. Это самый высокий уровень абстракции для данной иерархии. Затем общее понятие некоторым образом конкретизируется, тем самым уменьшается его объем и увеличивается содержание. Появляется менее общее понятие, которое на схеме иерархии будет расположено на уровень ниже исходного понятия. Этот процесс конкретизации понятий может быть продолжен до тех пор, пока на самом нижнем уровне не будет получено понятие, дальнейшая конкретизация которого невозможна либо нецелесообразна.

    Очевидно, что если в качестве самого абстрактного понятия для достижения целей ООМ принять некоторую модель, то концептуальную схему объектно-ориентированного моделирования можно представить, как показано на рис. 4.5.

    В настоящее время языком, реализующим объектно-ориентированные подходы (в том числе и к моделированию бизнес-процессов), является язык UML (Unified Modeling Language), представляющий собой общецелевой язык визуального моделирования, который разработан для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем. Этот язык может быть использован для построения концептуальных, логических и графических моделей сложных систем различного целевого назначения.

    Формальное описание предметной области с использованием UML основывается на иерархической структуре модельных представлений (см. рис. 4.5), состоящей из четырех уровней: 1) мета-метамодели; 2) мегамо- дели; 3) модели; 4) объектов.

    Рис. 4.5.

    Уровень мета-метамодели образует исходную основу для всех мета- модельных представлений. Главное его назначение состоит в том, чтобы определить язык для спецификации метамодели. Мета-метамодель определяет формальный язык на самом высоком уровне абстракции и является наиболее компактным его описанием. При этом мета-метамодель может специфицировать несколько метамоделей, чем достигается потенциальная гибкость включения дополнительных понятий.

    Метамодель является экземпляром или конкретизацией мета-мета- модели. Главная задача этого уровня - определить язык для спецификации модели. Данный уровень более конструктивный, чем предыдущий, поскольку обладает более развитой семантикой базовых понятий.

    Модель в контексте языка UML - это экземпляр метамодели в том смысле, что любая конкретная модель системы должна использовать только понятия метамодели, конкретизировав их применительно к данной ситуации. Это уровень для описания информации о конкретной предметной области. Однако если для построения модели используются понятия языка UML, то необходима полная согласованность понятий уровня модели с понятиями языка уровня метамодели. Конкретизация же понятий модели происходит на уровне объектов.

    С самой общей точки зрения UML состоит из двух взаимодействующих частей: семантики языка и нотации. Семантика определена для двух видов моделей: структурных моделей и моделей поведения. Структурные модели, известные также как статические, описывают структуру сущностей или компонентов (элементов) некоторой системы, включая их атрибуты и отношения. Модели поведения, называемые иногда динамическими моделями, описывают поведение или функционирование объектов системы, взаимодействие между ними, а также процесс изменения состояний отдельных элементов и системы в целом. Следует отметить, что именно для отображения поведенческого аспекта систем, в первую очередь, и создавался UML. Нотация же языка представляет собой графическую спецификацию для визуального представления семантики языка.

    В рамках языка UML все представления о модели сложной системы фиксируются в виде специальных графических конструкций - диаграмм. В терминах UML определены следующие виды диаграмм (рис. 4.6):

    • диаграмма вариантов использования (Use Case Diagram );
    • диаграмма классов (Class Diagram );
    • диаграммы поведения (Behavior Diagrams );
    • диаграммы реализации (Implementation Diagrams).

    Рис. 4.6.

    Каждая из этих диаграмм детализирует и конкретизирует различные представления о модели сложной системы в терминах языка UML. При этом диаграмма вариантов использования представляет собой наиболее общую концептуальную модель сложной системы, которая является исходной для построения других диаграмм. Диаграмма классов является по своей сути логической моделью, отражающей статические аспекты структурного построения системы.

    Особую роль играют диаграммы поведения, призванные отражать динамические аспекты функционирования сложной системы. К этому виду диаграмм относятся:

    • диаграмма состояния (Statechart Diagram );
    • диаграмма деятельности {Activity Diagram);
    • диаграммы взаимодействия {Interaction Diagrams) :
    • - диаграмма последовательности {Sequence Diagram);
    • - диаграмма кооперации {Collaboration Diagram).

    Наконец, диаграммы реализации служат для представления физических компонентов сложной системы. К ним относятся:

    • диаграмма компонентов {Component Diagram);
    • диаграмма развертывания {Deployment Diagram).

    В современной литературе довольно подробно рассмотрены все перечисленные диаграммы и объекты уровня метамодели.

    С точки зрения моделирования бизнес-процессов визуальное моделирование в IJML можно представить как некоторый процесс поуровневого спуска от наиболее общей и абстрактной концептуальной модели исходной системы к логической, а затем и к физической модели соответствующей программной системы. Для достижения этих целей сначала строится модель в форме так называемой диаграммы вариантов использования {Use Case Diagram ), которая описывает функциональное назначение системы или, другими словами, то, что система будет делать в процессе своего функционирования. Диаграмма вариантов использования является исходным концептуальным представлением или концептуальной моделью системы в процессе ее проектирования и разработки.

    Разработка диаграммы вариантов использования преследует следующие цели:

    • определить общие границы и контекст моделируемой предметной области на начальных этапах проектирования системы;
    • сформулировать общие требования к функциональному поведению проектируемой системы;
    • разработать исходную концептуальную модель системы для ее последующей детализации в форме логических и физических моделей;
    • подготовить исходную документацию для взаимодействия разработчиков системы с ее заказчиками и пользователями.

    Суть данной диаграммы состоит в следующем: проектируемая система представляется в виде множества сущностей или акторов, взаимодействующих с системой с помощью так называемых вариантов использования. При этом актором {actor) или действующим лицом называется любая сущность, взаимодействующая с системой извне. Это может быть человек, техническое устройство, программа или любая другая система, которая способна служить источником воздействия на моделируемую систему так, как определит сам разработчик. В свою очередь, вариант использования {use case) служит для описания сервисов, которые система предоставляет актору. Другими словами, каждый вариант использования определяет некоторый набор действий, совершаемый системой при диалоге с актором. При этом ничего не говорится о том, каким образом будет реализовано взаимодействие акторов с системой.

    Основные объекты диаграммы вариантов использования сведены в табл. 4.1.

    Основные объекты диаграммы вариантов использования UML

    Таблица 4.1

    Обозначение

    Назначение

    Вариант использования

    f Проверить состояние (текущего счета ) клиента банка

    Вариант использования применяется для спецификации общих особенностей поведения системы или любой другой сущности предметной области без рассмотрения внутренней структуры этой сущности

    Актор представляет собой любую внешнюю но отношению к моделируемой системе сущность, которая взаимодействует с системой и использует ее функциональные возможности для достижения определенных целей или решения частных задач

    Интерфейс

    Датчик Устройство считывания шрихкода

    Интерфейс служит для спецификации параметров модели, которые видимы извне без указания их внутренней структуры

    Примечание

    Реализовать в виде отдельной библиотеки стандартных функций

    Примечания в языке UML предназначены для включения в модель произвольной текстовой информации, имеющей непосредственное отношение к контексту разрабатываемого проекта

    Окончание табл. 4.1

    Обозначение

    Назначение

    Отношения на диаграмме вариантов использования

    Отношение ассоциации (association relationship)


    Ассоциация специфицирует семантические особенности взаимодействия акторов и вариантов использования в графической модели системы

    Отношение расширения (extend relationship)


    Отношение расширения определяет взаимосвязь экземпляров отдельного варианта использования с более общим вариантом, свойства которого определяются на основе способа совместного объединения данных экземпляров

    Отношение обобщения (generalization relationship)


    Отношение обобщения служит для указания того факта, что некоторый вариант использования Л может быть обобщен до варианта использования В. В этом случае вариант А будет являться специализацией варианта В

    Отношение включения (include relationship)


    Отношение включения между двумя вариантами использования указывает, что некоторое заданное поведение для одного варианта использования включается в качестве составного компонента в последовательность поведения другого варианта использования

    Пример диаграммы вариантов использования показан на рис. 4.7.


    Рис. 4.7.

    С точки зрения имитационного моделирования наибольший интерес представляют диаграмма вариантов использования и диаграммы поведения. Именно эти диаграммы призваны описывать функциональность (активность, движение) компонентов системы. Кроме того, совокупность этих диаграмм полностью определяет концептуальный уровень описания сложной системы (концептуальную модель). В связи с этим следует рассмотреть указанные диаграммы более подробно. Для примера в качестве сложной системы примем отдел продаж и маркетинга некоторой фирмы. Основная цель моделирования данной системы заключается в автоматизации работы отдела, т.е. в создании и внедрении информационной системы управления продажами. При этом предполагается, что в отделе полностью отсутствует автоматизация производственной деятельности.

    Не вдаваясь в описание семантики языка UML (она хорошо освещена в соответствующей литературе), приведем лишь результаты объектно-ориентированного анализа, показанные на рис. 4.8-4.12.

    Нетрудно заметить, что время как важнейший атрибут любой поведенческой модели присутствует на приведенных диаграммах лишь опосредованно. Это означает, что при анализе поведения (или изменения состояний) возможны лишь качественные оценки типа «не раньше, чем...», «только после того, как...» и т.н. Однако при анализе, например, диаграммы состояний (см. рис. 4.9) естественным образом возникают следующие вопросы: «Как часто поступают заказы?», «Как долго они оформляются?», «Каково соотношение количества автоматизированных рабочих мест (АРМ) и числа менеджеров?», «Какой должна быть производительность сервера?» и т.д. Очевидно, что без привлечения аппарата имитационного моделирования получить ответы на эти вопросы по приведенным диаграммам просто невозможно.


    Рис. 4.8.


    Рис. 4.9.


    Рис. 4.10.


    Рис. 4.11.


    Рис. 4.12.

    При этом отметим, что при построении заключительных диаграмм (диаграммы компонентов и диаграммы развертывания) требуется явно указывать технические характеристики аппаратных средств, например, таких, как количество рабочих станций (АРМ), тактовая частота процессоров, скорость передачи по сети, емкость запоминающих устройств и др. Ясно, что завышенные показатели могут привести к неоправданным затратам, а заниженные - к снижению эффективности функционирования всей системы. Поэтому обоснование требуемых значений всех технических показателей возможно лишь но результатам имитационного моделирования.

    Объектам диаграмм UML, моделирующим поведение системы, могут быть поставлены в соответствие объекты имитационной модели. Важнейшими диаграммами, несущими необходимую информацию, в данном случае являются диаграмма вариантов использования и диаграмма состояний. Взаимосвязь объектов этих диаграмм с объектами имитационной модели показана в табл. 4.2.

    Таблица 4.2

    Взаимосвязь объектов диаграмм UML и объектов имитационной модели

    Объект диаграммы состояний

    Объект имитационной модели

    Объект диаграммы вариантов использования

    Объект диаграммы состояний

    Объект имитационной модели

    Анализ табл. 4.2 показывает, что, несмотря на достаточную выразительность языка UML для построения наглядной имитационной модели, его средств явно недостаточно. Приведенные абстрактные объекты имитационной модели составляют концептуальную модель функционирования отдела продаж и маркетинга.

    При разработке программного обеспечения существует несколько подходов к моделированию. Важнейшие из них – алгоритмический (структурный) и объектно-ориентированный.

    Структурный метод представляет традиционный подход к созданию про­граммного обеспечения. Основным строительным блоком является процедура или функция, а внимание уделяется прежде всего вопросам передачи управления и декомпозиции больших алгоритмов на меньшие.

    Наиболее современным подходом к разработке программного обеспечения яв­ляется объектно-ориентированный. Здесь в качестве основного строительного блока выступает объект или класс. В самом общем смысле объект - это сущность, обычно извлекаемая из словаря предметной области или решения, а класс явля­ется описанием множества однотипных объектов. Каждый объект обладает иден­тичностью (его можно поименовать или как-то по-другому отличить от прочих объектов), состоянием (обычно с объектом бывают связаны некоторые данные) и поведением (с ним можно что-то делать или он сам может что-то делать с други­ми объектами).

    В качестве примера можно рассмотреть трехуровневую архитектуру биллинговой системы, состоящую из интерфейса пользователя, программного обеспечения промежуточного слоя и базы данных. Интерфейс содержит конкрет­ные объекты - кнопки, меню и диалоговые окна. База данных также состоит из конкретных объектов, а именно таблиц, представляющих сущности предметной области: клиентов, продукты и заказы. Программы промежуточного слоя включа­ют такие объекты, как транзакции и бизнес-правила, а также более абстрактные представления сущностей предметной области (клиентов, продуктов и заказов).

    Если принять объектно-ориентированный взгляд на мир, необходимо отве­тить на ряд вопросов. Какая структура должна быть у хорошей объ­ектно-ориентированной архитектуры? Какие артефакты должны быть созданы в процессе работы над проектом? Кто должен создавать их? И, наконец, как оценить результат?

    Визуализация, специфицирование, конструирование и документирование объектно-ориентированных систем - это и есть назначение языка UML.

    Объектно-ориентированные языки моделирования появились в период с сере­дины 70-х до конца 80-х годов, когда исследователи, поставленные перед необхо­димостью учитывать новые возможности объектно-ориентированных языков программирования и требования, предъявляемые все более сложными приложени­ями, вынуждены были начать разработку различных альтернативных подходов к анализу и проектированию.

    Технология разработки программных систем, в основу которых положена парадигма представления окружающего мира в виде объектов, являющихся экземплярами соответствующих классов, получила название - объектно-ориентированный анализ и проектирование (ООАП) - OOA&D (Object-Oriented Analysis/Design). В рамках этой технологии язык UML является средством графического представления результатов моделирования не только программного обеспечения, но и более широких классов систем и бизнес-приложений, с использованием объектно-ориентированных понятий. При этом явным образом обеспечивается взаимосвязь между базовыми понятиями для моделей концептуального и физического уровня, достигается масштабируемость моделей, что особенно важно для сложных многоцелевых систем.

    Сами разработчики языка определяют его как «общецелевой язык визуального моделирования, разработанный для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем» .

    В настоящее время в практику разработки сложных информационных систем всё шире внедряется концепция объектно-ориентированного моделирования. Эта концепция явилась результатом развития концептуального и онтологического моделирования

    Концептуальное моделирование. Процесс, целью которого является выявление, анализ и описание релевантных его целям сущностей предметной области, взаимосвязей между ними, ограничений, которым они должны удовлетворять, а также их поведения (в смысле изменения их состояния во времени), называют концептуальным моделированием . По существу, концептуальное моделирование представляет структуру знаний о предметной области системы, являющихся необходимой предпосылкой для квалифицированного проектирования таких систем.

    Моделирование на базе онтологий. Понятие концептуального моделирования удалось уточнить и расширить, используя понятие онтологии. Онтология - это структурная спецификация некоторой предметной области, ее формализованное представление, которое включает словарь (или имена) указателей на термины предметной области и логические выражения, которые описывают, как они соотносятся друг с другом. Смена терминологии привела к появлению таких понятий, как онтологическое моделирование и онтологический инжиниринг .

    Онтологический инжиниринг – это процесс проектирования и разработки онтологий. Он является ядром концепции «управления (менеджмента) знаниями» и технологий инженерии знаний, охватывающих широкий круг методов – от извлечениязнаний до их структурирования и формализации.

    Онтологический инжиниринг возник в середине 90-ых годов в крупных корпорациях, где проблемы обработки информация приобрели особую остроту и стали критическими. Стало очевидным, что основным узким местом в технологиях корпоративного управления является обработка знаний , накопленных специалистами компании, так как именно знания обеспечивают преимущество перед конкурентами. Так появился термин «Управление Знаниями» или «Менеджмент Знаний» (МЗ). МЗ трактуется как совокупность процессов, которые управляют созданием, распространением, обработкой и использованием информации внутри предприятия.

    Объектно-ориентированное моделирование. Онтологическое моделирование легло также в основу методологий объектно-ориентированного моделирования (ООМ), которая ориентирована, прежде всего, на создание больших и сложных систем, коллективную их разработку, последующее активное сопровождение при эксплуатации и регулярные модификации. В ООМ включают:

    · объектно-ориентированный анализ (Object-Oriented Analysis, OOA),

    • объектно-ориентированное проектирование (Object-Oriented Design, OOD),

    · объектно-ориентированное программирование (Object-Oriented Programming, OOР).

    Методология ООA – это методология анализа сущностей реального(или идеального ) мира на основе понятий класса (как типа объектов) и объекта (как экземпляра класса). Объекты и их отношения, представленные в диаграммах классов, относит эту методологию к категории онтологического моделирования .

    Для реализации ОО-моделей разработан объектно-ориентированный унифицированный язык моделирования (Unified Modeling Language, UML). Он используется для спецификации, визуализации и документирования компонентов объектно-ориентированных информационных (программных) систем во время разработки.

    Для моделирования таких систем UML предоставляет свыше десятка типов диаграмм, моделирующих структуру и функционирование («поведение») объектных систем с разных точек зрения. Моделирование начинается с анализа и моделирования предметной области программной системы и разработки требований её пользователей. Разработанный список требований представляется Use-Case-диаграмами UML. Затем моделируется структура системы в форме «структурных» диаграмм:

    Диаграмм классов (Class Diagram),

    Диаграмм программных компонентов (Component) и

    Диаграмм развёртывания программных компонентов на программно-аппаратной платформе (Deployment Diagram).

    Динамические свойства системы моделируются набором диаграмм «поведенческих» типов, определяющих

    Алгоритмы взаимодействия программных объектов (Sequential- и Collaboration-диаграммы),

    Поведение дискретных объектов (Statechart-диаграммы),

    Процессы, протекающие в объектной системе (Activity-диаграммы.

    В качестве примера на рис. 36 представлены требования пользователей к электронному книжному магазину (в форме Use-Case-диаграмм системы Rational Rose).


    Рис 36. Use Case-диаграммы Rose-проекта eBookShop

    Рис. 37. Диаграмма классов предметной области Rose-проекта eBookShop


    Рис. 38. Полная статическая модель Rose-проекта eBookShop (в форме UML-диаграммы Классов)


    В основе этой модели лежит модель предметной области книжного магазина, показанная на рис. 37. Полная статическая модель электронного книжного магазина, удовлетворяющая всем требованиям пользователей, показана на рис. 38.

    Методики объектно-ориентированного моделирования совершили коренной переворот в архитектуре современных информационных систем. На смену традиционной архитектуры алгоритмической обработки данных пришла архитектура, базирующаяся на (объектных) моделях (Model-Driven Architecture, MDA).



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: