Технологии виртуальных защищенных сетей VPN. Алгоритм установления соединения. Основные понятие и функции сети VPN

Технология защищенного канала призвана обеспечивать безопасность передачи данных по открытой транспортной сети, например по Интернету. Защищенный канал подразумевает выполнение трех основных функций:

· взаимную аутентификацию абонентов при установлении соединения, которая может быть выполнена, например, путем обмена паролями;

· защиту передаваемых по каналу сообщений от несанкционированного доступа, например, путем шифрования;

· подтверждение целостности поступающих по каналу сообщений, например, путем передачи одновременно с сообщением его дайджеста.

Совокупность защищенных каналов, созданных предприятием в публичной сети для объединения своих филиалов, часто называют виртуальной частной сетью (Virtual Private Network, VPN).

Существуют разные реализации технологии защищенного канала, которые, в частности, могут работать на разных уровнях модели OSI. Так, функции популярного протокола SSL соответствуют представительному уровню модели OSI. Новая версия сетевого протокола IP предусматривает все функции – взаимную аутентификацию, шифрование и обеспечение целостности, – которые по определению свойственны защищенному каналу, а протокол туннелирования РРТР защищает данные на канальном уровне.

В зависимости от места расположения программного обеспечения защищенного канала различают две схемы его образования:

· схему с конечными узлами, взаимодействующими через публичную сеть (Рис. 1.2, а);

· схему с оборудованием поставщика услуг публичной сети, расположенным на границе между частной и публичной сетями (Рис. 1.2, б).

В первом случае защищенный канал образуется программными средствами, установленными на двух удаленных компьютерах, принадлежащих двум разным локальным сетям одного предприятия и связанных между собой через публичную сеть. Преимуществом этого подхода является полная защищенность канала вдоль всего пути следования, а также возможность использования любых протоколов создания защищенных каналов, лишь бы на конечных точках канала поддерживался один и тот же протокол. Недостатки заключаются в избыточности и децентрализованности решения. Избыточность состоит в том, что вряд ли стоит создавать защищенный канал на всем пути прохождения данных: уязвимыми для злоумышленников обычно являются сети с коммутацией пакетов, а не каналы телефонной сети или выделенные каналы, через которые локальные сети подключены к территориальной сети. Поэтому защиту каналов доступа к публичной сети можно считать избыточной. Децентрализация заключается в том, что для каждого компьютера, которому требуется предоставить услуги защищенного канала, необходимо отдельно устанавливать, конфигурировать и администрировать программные средства защиты данных. Подключение каждого нового компьютера к защищенному каналу требует выполнения этих трудоемких работ заново.


Рисунок 1.2 – Два способа образования защищенного канала

Во втором случае клиенты и серверы не участвуют в создании защищенного канала – он прокладывается только внутри публичной сети с коммутацией пакетов, например, внутри Интернета. Канал может быть проложен, например, между сервером удаленного доступа поставщика услуг публичной сети и пограничным маршрутизатором корпоративной сети. Это хорошо масштабируемое решение, управляемое централизованно как администратором корпоративной сети, так и администратором сети поставщика услуг. Для компьютеров корпоративной сети канал прозрачен – программное обеспечение этих конечных узлов остается без изменений. Такой гибкий подход позволяет легко образовывать новые каналы защищенного взаимодействия между компьютерами независимо от их места расположения. Реализация этого подхода сложнее – нужен стандартный протокол образования защищенного канала, требуется установка у всех поставщиков услуг программного обеспечения, поддерживающего такой протокол, необходима поддержка протокола производителями пограничного коммуникационного оборудования. Однако вариант, когда все заботы по поддержании защищенного канала берет на себя поставщик услуг публичной сети, оставляет сомнения в надежности защиты: во-первых, незащищенными оказываются каналы доступа к публичной сети, во-вторых, потребитель услуг чувствует себя в полной зависимости от надежности поставщика услуг. И, тем не менее, специалисты прогнозируют, что именно вторая схема в ближайшем будущем станет основной в построении защищенных каналов.

2. Принципы криптографической защиты информации

Криптография представляет собой совокупность методов преобразования данных, направленных на то, чтобы сделать эти данные недоступными для противника. Такие преобразования позволяют решить две главные проблемы защиты данных: проблему конфиденциальности (путем лишения противника возможности извлечь информацию из канала связи) и проблему целостности (путем лишения противника возможности изменить сообщение так, чтобы изменился его смысл, или ввести ложную информацию в канал связи).

Проблемы конфиденциальности и целостности информации тесно связаны между собой, поэтому методы решения одной из них часто применимы для решения другой.

2.1. Схема симметричной криптосистемы

Обобщенная схема криптографической системы, обеспечивающей шифрование передаваемой информации, показана на рис.2.1.

Рисунок 2.1 – Обобщенная схема криптосистемы

Отправитель генерирует открытый текст исходного сообщения М, которое должно быть передано законному получателю по незащищенному каналу. За каналом следит перехватчик с целью перехватить и раскрыть передаваемое сообщение. Для того чтобы перехватчик не смог узнать содержание сообщения М, отправитель шифрует его с помощью обратимого преобразования Е К и получает шифртекст (или криптограмму ) С = Е К (М), который отправляет получателю.

Законный получатель, приняв шифртекст С, расшифровы-вает его с помощью обратного преобразования D = Е К –1 и получает исходное сообщение в виде открытого текста М:

D K (C) = Е К –1 (Е К (М)) = M.

Преобразование Е К выбирается из семейства криптографических преобразований, называемых криптоалгоритмами. Параметр, с помощью которого выбирается отдельное используемое преобразование, называетсякриптографическим ключом К. Криптосистема имеет разные варианты реализации: набор инструкций, аппаратные средства, комплекс программ компьютера, которые позволяют зашифровать открытый текст и расшифровать шифр-текст различными способами, один из которых выбирается с помощью конкретного ключа К.

Криптографическая система – это однопараметрическое семейство обратимых преобразований

из пространства сообщений открытого текста в пространство шифрованных текстов. Параметр К (ключ) выбирается из конечного множества , называемого пространством ключей.

Преобразование шифрования может быть симметричным или асимметричным относительно преобразования расшифрования. Это важное свойство функции преобразования определяет два класса криптосистем:

· симметричные (одноключевые) криптосистемы;

· асимметричные (двухключевые) криптосистемы (с открытым ключом).

Схема симметричной криптосистемы с одним секретным ключом показана на рис.2.1. В ней используются одинаковые секретные ключи в блоке шифрования и блоке расшифрования.

2.2. Схема асимметричной криптосистемы

Обобщенная схема асимметричной криптосистемы с двумя разными ключами К 1 и К 2 показана на рис. 2.2. В этой криптосистеме один из ключей является открытым, а другой – секретным.


Рисунок 2.2 – Обобщенная схема асимметричной криптосистемы

с открытым ключом

В симметричной криптосистеме секретный ключ надо передавать отправителю и получателю по защищенному каналу распространения ключей, например такому, как курьерская служба. На рис. 2.1 этот канал показан "экранированной" линией. Существуют и другие способы распределения секретных ключей, они будут рассмотрены позднее. В асимметричной криптосистеме передают по незащищенному каналу только открытый ключ, а секретный ключ сохраняют на месте его генерации.

На рис. 2.3 показан поток информации в криптосистеме в случае активных действий перехватчика. Активный перехватчик не только считывает все шифртексты, передаваемые по каналу, но может также пытаться изменять их по своему усмотрению.

Любая попытка со стороны перехватчика расшифровать шифртекст С для получения открытого текста М или зашифровать свой собственный текст М’ для получения правдоподобного шифртекста С’, не имея подлинного ключа, называется крипто-аналитической атакой.

Рисунок 2.3 – Поток информации в криптосистеме при активном

перехвате сообщений

Если предпринятые криптоаналитические атаки не достигают поставленной цели и криптоаналитик не может, не имея подлинного ключа, вывести М из С или С’ из М’, то считается, что такая криптосистема является криптостойкой .

Криптоанализ – это наука о раскрытии исходного текста зашифрованного сообщения без доступа к ключу. Успешный анализ может раскрыть исходный текст или ключ. Он позволяет также обнаружить слабые места в криптосистеме, что, в конечном счете, ведет к тем же результатам.

Фундаментальное правило криптоанализа, впервые сформулированное голландцем А.Керкхоффом еще в XIX веке заключается в том, что стойкость шифра (криптосистемы) должна определяться только секретностью ключа. Иными словами, правило Керкхоффа состоит в том, что весь алгоритм шифрования, кроме значения секретного ключа, известен криптоаналитику противника. Это обусловлено тем, что криптосистема, реализующая семейство криптографических преобразований, обычно рассматривается как открытая система.

2.3. Аппаратно-программные средства защиты компьютерной информации

Аппаратно-программные средства, обеспечивающие повышенный уровень защиты можно разбить на пять основных групп (Рис. 2.4).

Первую группу образуют системы идентификации и аутентификации пользователей . Такие системы применяются для ограничения доступа случайных и незаконных пользователей к ресурсам компьютерной системы. Общий алгоритм работы этих систем заключается в том, чтобы получить от пользователя информацию, удостоверяющую его личность, проверить ее подлинность и затем предоставить (или не предоставить) этому пользователю возможность работы с системой.

При построении подобных систем возникает проблема выбора информации, на основе которой осуществляются процедуры идентификации и аутентификации пользователя. Можно выделить следующие типы:

(1) секретная информация, которой обладает пользователь (пароль, персональный идентификатор, секретный ключ и т.п.); эту информацию пользователь должен запомнить или же могут быть применены специальные средства хранения этой информации);

(2) физиологические параметры человека (отпечатки пальцев, рисунок радужной оболочки глаза и т.п.) или особенности поведения человека (особенности работы на клавиатуре и т.п.).

Системы идентификации, основанные на первом типе информации, принято считать традиционными . Системы идентификации, использующие второй тип информации, называются биометрическими .

Вторую группу средств, обеспечивающих повышенный уровень защиты, составляют системы шифрования дисковых данных . Основная задача, решаемая такими системами, состоит в защите от несанкционированного использования данных, расположенных на магнитных носителях.

Обеспечение конфиденциальности данных, располагаемых на магнитных носителях, осуществляется путем их шифрования с использованием симметричных алгоритмов шифрования. Основным классификационным признаком для комплексов шифрования служит уровень их встраивания в компьютерную систему.

Работа прикладных программ с дисковыми накопителями состоит из двух этапов – “логического” и “физического”.

Логический этап соответствует уровню взаимодействия прикладной программы с операционной системой (например, вызов сервисных функций чтения/записи данных). На этом уровне основным объектом является файл.

Физический этап соответствует уровню взаимодействия операционной системы и аппаратуры. В качестве объектов этого уровня выступают структуры физической организации данных - сектора диска.

В результате, системы шифрования данных могут осуществлять криптографические преобразования данных на уровне файлов (защищаются отдельные файлы) и на уровне дисков (защищаются диски целиком).

Другим классификационным признаком систем шифрования дисковых данных является способ их функционирования.

По способу функционирования системы шифрования дисковых данных делят на два класса:

(1) системы “прозрачного” шифрования;

(2) системы, специально вызываемые для осуществления шифрования.

Рисунок 2.4 – Аппаратно-программные средства защиты компьютерной информации

В системах прозрачного шифрования (шифрования “на лету”) криптографические преобразования осуществляются в режиме реального времени, незаметно для пользователя. Например, пользователь записывает подготовленный в текстовом редакторе документ на защищаемый диск, а система защиты в процессе записи выполняет его шифрование.

Системы второго класса обычно представляют собой утилиты, которые необходимо специально вызывать для выполнения шифрования. К ним относятся, например, архиваторы со встроенными средствами парольной защиты.

К третьей группе средств относятся системы шифрования данных, передаваемых по компьютерным сетям . Различают два основных способа шифрования: канальное шифрование и оконечное (абонентское) шифрование.

В случае канального шифрования защищается вся передаваемая по каналу связи информация, включая служебную. Соответствующие процедуры шифрования реализуются с помощью протокола канального уровня семиуровневой эталонной модели взаимодействия открытых систем OSI.

Этот способ шифрования обладает следующим достоинством - встраивание процедур шифрования на канальный уровень позволяет использовать аппаратные средства, что способствует повышению производительности системы.

Однако, у данного подхода имеются существенные недостатки:

Шифрованию на данном уровне подлежит вся информация, включая служебные данные транспортных протоколов; это осложняет механизм маршрутизации сетевых пакетов и требует расшифрования данных в устройствах промежуточной коммутации (шлюзах, ретрансляторах и т.п.);

Шифрование служебной информации, неизбежное на данном уровне, может привести к появлению статистических закономерностей в шифрованных данных; это влияет на надежность защиты и накладывает ограничения на использование криптографических алгоритмов.

Оконечное (абонентское) шифрование позволяет обеспечить конфиденциальность данных, передаваемых между двумя прикладными объектами (абонентами). Оконечное шифрование реализуется с помощью протокола прикладного или представительного уровня эталонной модели OSI. В этом случае защищенным оказывается только содержание сообщения, вся служебная информация остается открытой. Данный способ позволяет избежать проблем, связанных с шифрованием служебной информации, но при этом возникают другие проблемы. В частности, злоумышленник, имеющий доступ к каналам связи компьютерной сети, получает возможность анализировать информацию о структуре обмена сообщениями, например, об отправителе и получателе, о времени и условиях передачи данных, а также об объеме передаваемых данных.

Четвертую группу средств защиты составляют системы аутентификации электронных данных .

При обмене электронными данными по сетям связи возникает проблема аутентификации автора документа и самого документа, т.е. установление подлинности автора и проверка отсутствия изменений в полученном документе.

Для аутентификации электронных данных применяют код аутентификации сообщения (имитовставку) или электронную цифровую подпись. При формировании кода аутентификации сообщения и электронной цифровой подписи используются разные типы систем шифрования.

Код аутентификации сообщения МАС (Message Authentication Code) формируют с помощью симметричных систем шифрования данных. Проверка целостности принятого сообщения осуществляется путем проверки кода MAC получателем сообщения.

В отечественном стандарте симметричного шифрования данных (ГОСТ 28147-89) предусмотрен режим выработки имитовставки, обеспечивающий имитозащиту , т.е. защиту системы шифрованной связи от навязывания ложных данных.

Имитовставка вырабатывается из открытых данных посредством специального преобразования шифрования с использованием секретного ключа и передается по каналу связи в конце зашифрованных данных. Имитовставка проверяется получателем сообщения, владеющим секретным ключом, путем повторения процедуры, выполненной ранее отправителем, над полученными открытыми данными.

Электронная цифровая подпись (ЭЦП) представляет собой относительно небольшое количество дополнительной аутентифицирующей цифровой информации, передаваемой вместе с подписываемым текстом.

Для реализации ЭЦП используются принципы асимметричного шифрования. Система ЭЦП включает процедуру формирования цифровой подписи отправителем с использованием секретного ключа отправителя и процедуру проверки подписи получателем с использованием открытого ключа отправителя.

Пятую группу средств, обеспечивающих повышенный уровень защиты, образуют средства управления ключевой информацией . Под ключевой информацией понимается совокупность всех используемых в компьютерной системе или сети криптографических ключей.

Безопасность любого криптографического алгоритма определяется используемыми криптографическими ключами. В случае ненадежного управления ключами злоумышленник может завладеть ключевой информацией и получить полный доступ ко всей информации в компьютерной системе или сети.

Основным классификационным признаком средств управления ключевой информацией является вид функции управления ключами. Различают следующие основные виды функций управления ключами: генерация ключей, хранение ключей и распределение ключей.

Способы генерации ключей различаются для симметричных и асимметричных криптосистем. Для генерации ключей симметричных криптосистем используются аппаратные и программные средства генерации случайных чисел, в частности, схемы с применением блочного симметричного алгоритма шифрования. Генерация ключей для асимметричных криптосистем представляет существенно более сложную задачу в связи с необходимостью получения ключей с определенными математическими свойствами.

Функция хранения ключей предполагает организацию безопасного хранения, учета и удаления ключей. Для обеспечения безопасного хранения и передачи ключей применяют их шифрование с помощью других ключей. Такой подход приводит к концепции иерархии ключей . В иерархию ключей обычно входят главный ключ (мастер-ключ), ключ шифрования ключей и ключ шифрования данных. Следует отметить, что генерация и хранение мастер-ключей являются критическими вопросами криптографической защиты.

Распределение ключей является самым ответственным процессом в управлении ключами. Этот процесс должен гарантировать скрытность распределяемых ключей, а также оперативность и точность их распределения. Различают два основных способа распределения ключей между пользователями компьютерной сети:

1) применение одного или нескольких центров распределения ключей;

2) прямой обмен сеансовыми ключами между пользователями.

Задача реализация корпоративной сети компании в рамках одного здания может быть решена относительно легко. Однако на сегодня инфраструктура компаний имеет географически распределенные отделы самой компании. Реализация защищенной корпоративной сети в таком случае задача более сложного плана. В таких случаях зачастую используют безопасные vpn сервера .

Концепция построения виртуальных защищенных сетей VPN

В концепции создании виртуальных сетей VPN лежит простая идея — если в глобальной сети есть 2 узла, которым нужно обменяться данными, то между ними нужно создать виртуальный защищенный туннель для реализации целостности и конфиденциальности данных, передающих через открытые сети.

Основные понятие и функции сети VPN

При наличии связи между корпоративной локальной сетью и сетью Интернет возникают двух типов:

  • несанкционированный доступ к ресурсам локальной сети через вход
  • несанкционированный доступ к информации при передаче через открытую сеть Интернет

Защита данных при передаче по открытым каналам основана на реализации виртуальных защищенных сетей VPN. Виртуальной защищенной сетью VPN называют соединение локальные сетей и отдельных ПК через открытую сеть в единую виртуальную корпоративную сеть. Сеть VPN разрешает с помощью туннелей VPN создавать соединения между офисами, филиалами и удаленными пользователями, при этом безопасно транспортировать данные (рис.1).

Рисунок — 1

Туннель VPN являет собой соединение, проходящее через открытую сеть, где транспортируются криптографически защищенные пакеты данных. Защита данных при передаче по туннелю VPN реализована на следующих задачах:

  • криптографическое шифрование транспортируемых данных
  • аутентификация пользователей виртуальной сети
  • проверка целостности и подлинности передаваемых данных

VPN-клиент являет собой программный или аппаратный комплекс, работающий на основе персонального компьютера. Его сетевое ПО изменяется для реализации шифрования и аутентификации трафика.

VPN-сервер — также может быть программным или аппаратным комплексом, реализующий функции сервера. Он реализует защиту серверов от несанкционированного доступа из других сетей, а также организацию виртуальной сети между клиентами, серверами и шлюзами.

Шлюз безопасности VPN — сетевое устройство, подключаемое к 2 сетям и реализует функции аутентификации и шифрования для множества хостов, находящихся за ним.

Суть туннелирования заключается в том, чтобы инкапсулировать (упаковать) данные в новый пакет. Пакет протокола более низкого уровня помещается в поле данных пакета протокола более высокого или такого же уровня (рис.2). Сам процесс инкапсуляции не защищает от искажения или несанкционированного доступа, он разрешает защитить конфиденциальность инкапсулированных данных.

Рисунок — 2

При прибытии пакета в конечную точка виртуального канала из него извлекается внутренний исходных пакет, расшифровывают и используют дальше по внутренней сети (рис.3).

Рисунок — 3

Также инкапсуляция решает проблему конфликта двух адресов между локальными сетями.

Варианты создания виртуальных защищенных каналов

При создании VPN есть два популярных способа(рис.4):

  • виртуальных защищенный канал между локальными сетями (канал ЛВС-ЛВС)
  • виртуальный защищенных канал между локальной сетью и узлом (канал клиент-ЛВС)

Рисунок — 4

Первый метод соединения разрешает заменить дорогие выделенные каналы между отдельными узлами и создать постоянно работающие защищенные каналы между ними. Здесь шлюз безопасности служит интерфейсом между локальной сетью и туннелем. Многие предприятия реализуют такой вид VPN для замены или дополнения к .

Вторая схема нужна для соединения с мобильными или удаленными пользователями. Создания туннеля инициирует клиент.

С точки зрения информационной безопасности самым лучшим вариантом является защищенный туннель между конечными точками соединения. Однако такой вариант ведет к децентрализации управления и избыточности ресурсов, ибо нужно ставить VPN на каждом компьютере сети. Если внутри локальной сети, которая входит в виртуальную, не требует защиты трафика, тогда в качестве конечной точки со стороны локальной сети может выступать или маршрутизатор этой же сети.

Методы реализации безопасности VPN

При создании защищенной виртуальной сети VPN подразумевают, что передаваемая информация будет иметь критерии защищаемой информации , а именно: конфиденциальность, целостность, доступность. Конфиденциальность достигается с помощью методов асимметричного и симметричного шифрования. Целостность транспортируемых данных достигается с помощью . Аутентификация достигается с помощью одноразовых/многоразовых паролей, сертификатов, смарт-карт, протоколов .

Для реализации безопасности транспортируемой информации в виртуальных защищенных сетях, нужно решить следующие задачи сетевой безопасности:

  • взаимная аутентификация пользователей при соединении
  • реализация конфиденциальности, аутентичности и целостности транспортируемых данных
  • управление доступом
  • безопасность периметра сети и
  • управление безопасностью сети

VPN-решения для создания защищенных сетей

Классификация сетей VPN

На основе глобальной сети Интернет можно реализовывать почти все виды трафика. Есть разные схемы классификации VPN. Самая распространенная схема имеет 3 признака классификации:

  • рабочий уровень модели OSI
  • архитектура технического решения VPN
  • метод технической реализации VPN

Защищенный канал — канал между двумя узлами сети, вдоль определенного виртуального пути. Такой канал можно создать с помощью системных методов, основанных на разных уровнях модели OSI (рис.5).

Рисунок — 5

Можно заметить, что VPN создаются на достаточно низких уровнях. Причина такова, что чем ниже в стеке реализованы методы защищенного канала, тем проще их реализовать прозрачными для приложений. На канальном и сетевом уровнях зависимость приложений от протоколов защиты исчезает. Если для защиты информации реализован протокол из верхних уровней, то способ защиты не зависит от технологии сети, что можно считать плюсом. Однако приложение становится зависимым от конкретного протокола защиты.

VPN канального уровня . Методы на таком уровня разрешают инкапсулировать трафик третьего уровня (и более высоких) и создавать виртуальные туннели типа точка-точка. К таким относят VPN-продукты на основе протокола .

VPN сетевого уровня . VPN-продукты такого уровня реализуют инкапсуляцию IP в IP. К примеру используют протокол .

VPN сеансового уровня . Некоторые VPN реализуют подход «посредники каналов», такой метод работает над транспортным уровнем и ретранслирует трафик из защищенной сети в общедоступною сеть Интернет для каждого сокета отдельно.

Классификация VPN по архитектуре технического решения

Делят на:

  • внутрикорпоративные VPN — нужны для реализации защищенной работы между отделами внутри компании
  • VPN с удаленным доступом — нужны для реализации защищенного удаленного доступа к корпоративным информационным ресурсам
  • межкорпоративные VPN — нужны между отдельными частями бизнеса разнесенных географически

Классификация VPN по методу технической реализации

Делят на:

  • VPN на основе маршрутизаторов — задачи защиты падают на устройство маршрутизатора
  • VPN на основе межсетевых экранов — задачи защиты падают на устройство межсетевого экрана
  • VPN на основе программных решений — применяется ПО, которое выигрывает в гибкости и настройке, однако проигрывает в пропускной способности
  • VPN на основе специальных аппаратных устройствах — устройства, где шифрование реализовано специальными отдельными микросхемами, реализуют высокую производительность за большие деньги

14.09.2006 Марк Джозеф Эдвардс

Какой метод оптимален для ваших условий? Пересылка файлов по Internet - операция весьма распространенная, а защита передаваемых файлов имеет первостепенную важность для многих предприятий. Существует целый ряд способов передачи файлов и множество методов защиты этих файлов в процессе передачи.

Какой метод оптимален для ваших условий?

Пересылка файлов по Internet - операция весьма распространенная, а защита передаваемых файлов имеет первостепенную важность для многих предприятий. Существует целый ряд способов передачи файлов и множество методов защиты этих файлов в процессе передачи. Выбор методов передачи и шифрования зависит от общих потребностей отправителя. В одних случаях достаточно просто обеспечить безопасность файлов в процессе передачи. В других важнее зашифровать файлы таким образом, чтобы они оставались защищенными и после доставки адресату. Давайте подробно рассмотрим способы безопасной передачи файлов.

В пути и по прибытии

Если ваши намерения ограничиваются защитой файлов в процессе их передачи по каналам Internet, вам необходима технология безопасной транспортировки. Один из вариантов состоит в использовании Web-узла, способного принимать пересылаемые на него файлы и обеспечивающего возможность безопасной загрузки таких файлов. Для организации защищенной транспортировки файлов на Web-узел можно создать Web-страницу, оснащенную средствами Secure Sockets Layer (SSL), на которой размещается элемент управления ActiveX или сценарий Javascript. К примеру, можно воспользоваться элементом управления AspUpload от компании Persitis Software; разработчики утверждают, что это «самое современное из имеющихся на рынке средств управления транспортировкой файлов на центральные узлы». Еще один вариант - использовать сценарий Free ASP Upload, который не требует применения бинарного компонента. Для обеспечения дополнительной защиты можно даже защитить паролями как Web-страницу, так и ассоциированный с ней каталог для размещения поступивших на узел материалов. Что же касается загрузки файлов с Web-узла, то достаточно позаботиться о том, чтобы соответствующий Web-сервер обеспечивал соединение с применением средств SSL, по крайней мере для URL, который используется для загрузки файлов.

Альтернативный вариант - использование сервера FTP, обеспечивающего передачу данных по протоколу FTP Secure. В сущности, FTPS - это протокол FTP, выполняемый по защищенному соединению SSL. Возможность использования протокола FTPS предусмотрена во многих популярных клиентах FTP, но, к сожалению, она не реализована в службе FTP Service корпорации Microsoft. Поэтому вам придется задействовать обеспечивающее такую возможность приложение сервера FTP (например, популярный продукт WFTPD). Не путайте FTPS с протоколом SSH File Transfer Protocol. SFTP - это протокол для передачи файлов, выполняемый поверх оболочки Secure Shell (SSH); кроме того, его можно использовать для передачи файлов. Впрочем, нужно иметь в виду, что SFTP несовместим с традиционным протоколом FTP, так что наряду с защищенным сервером оболочки (скажем, с сервером, предоставляемым SSH Communications Security), понадобится специальный клиент SFTP (это может быть клиент, входящий в пакет PuTTY Telnet/Secure Shell или WinSCP с графическим интерфейсом).

Кроме того, безопасную передачу файлов можно организовать на базе виртуальных частных сетей VPN. Платформы Windows Server обеспечивают совместимость с технологией VPN посредством RRAS. Однако это не гарантирует совместимости с VPN-решениями ваших партнеров. Если такой совместимости нет, можно воспользоваться одним из широко распространенных решений, например средством Open-VPN с открытым исходным кодом. Оно распространяется бесплатно и выполняется на целом ряде платформ, включая Windows, Linux, BSD и Macintosh OS X. Дополнительные сведения об интеграции OpenVPN можно найти в статье «Работаем с OpenVPN» ( ).

Установив VPN-соединение, вы сможете выделять каталоги и передавать файлы в обоих направлениях. При любом варианте использования VPN трафик шифруется, поэтому необходимости в дополнительном шифровании файлов не возникает - кроме тех случаев, когда требуется, чтобы файлы оставались защищенными и в системе, на которую они передаются. Этот принцип применим ко всем методам передачи, о которых я упоминал до сих пор.

Если этап передачи не вызывает у вас опасений и ваша главная забота состоит в том, чтобы исключить доступ к содержимому файлов со стороны не уполномоченных на то пользователей, целесообразно просто зашифровывать файлы до их транспортировки. В этом случае электронная почта, вероятно, будет эффективным каналом передачи файлов. Приложения для обработки электронной почты установлены почти на каждой настольной системе, так что, если вы передаете файлы по электронной почте, у вас не возникает необходимости применять дополнительные технологии, кроме средств шифрования данных. Метод передачи файлов по электронной почте эффективен потому, что сообщения и прикрепляемые файлы обычно поступают непосредственно в почтовый ящик получателя, хотя в процессе передачи сообщение может проходить через несколько серверов.

Если же вам тем не менее требуются дополнительные средства защиты данных в процессе их передачи по каналам электронной почты, рассмотрите возможность использования протоколов SMTP Secure (SMTPS) и POP3 Secure (POP3S). В сущности, SMTPS и POP3S - это обычные протоколы SMTP и POP3, выполняемые с использованием защищенного соединения SSL. Microsoft Exchange Server, как и большинство почтовых клиентов, включая Microsoft Outlook, обеспечивает возможность использования протоколов SMTPS и POP3S. Нужно иметь в виду, что даже в тех случаях, когда для обмена файлами между почтовым клиентом и почтовым сервером используется протокол SMTPS, сохраняется возможность того, что почтовый сервер будет доставлять почту конечному адресату через обычное незащищенное соединение SMTP.

Поскольку средства для обработки электронной почты получили столь широкое распространение, далее в этой статье мы будем обсуждать прежде всего вопросы безопасной передачи файлов по каналам электронной почты. При этом мы будем исходить из того, что отправителю необходимо шифровать данные, чтобы защитить их как на этапе передачи, так и после доставки. Итак, рассмотрим наиболее популярные на сегодня технологии шифрования сообщений электронной почты.

Средства сжатия файлов

Существует множество средств сжатия файлов в единый архивный файл, и многие из предлагаемых решений предусматривают применение той или иной формы шифрования для защиты содержимого архива. Обычно в процессе сжатия устанавливается пароль, и всякий, кто хочет открыть архив, может сделать это только с помощью данного пароля.

Один из наиболее популярных методов создания архивов сжатых файлов - метод zip-компрессии; его поддерживают практически все архиваторы. И одно из самых распространенных на сегодня средств zip-компрессии - приложение WinZip. Его можно использовать как автономную программу, встроить в Windows Explorer для облегчения доступа, а также с помощью модуля WinZip Companion for Outlook интегрировать этот продукт с клиентом Outlook. WinZip, как и многие другие оснащенные средствами zip архиваторы, обеспечивает возможность шифрования по методу Zip 2.0 Encryption. Но надо сказать, что защита файлов с помощью этого метода недостаточно надежна. Более приемлемый вариант шифрования реализован в продукте WinZip 9.0. Как показано на экране 1, ныне WinZip поддерживает спецификацию Advanced Encryption Standard (AES), где используются 128-разрядные или 256-разрядные ключи шифрования. AES - относительно новая технология, но ее уже считают промышленным стандартом.

Экран 1. WinZip поддерживает спецификацию AES

Я не могу сказать точно, какое количество архиваторов обеспечивает применение стойких алгоритмов шифрования средствами AES, и ограничусь упоминанием одного такого приложения; это разработанное компанией BAxBEx Software изделие bxAutoZip. Оно способно взаимодействовать с программой шифрования CryptoMite фирмы BAxBEx и может встраиваться в Outlook. Если WinZip позволяет шифровать данные только средствами Zip 2.0 и AES, CryptoMite обеспечивает возможность использования ряда других средств шифрования, включая популярные алгоритмы Twofish и Blowfish, Cast 256, Gost, Mars и SCOP.

Средствами распаковки zip-файлов оснащены уже практически все компьютерные системы, однако не все zip-приложения обеспечивают совместимость с различными алгоритмами шифрования. Поэтому, перед тем как отправлять зашифрованные файлы, надо убедиться в том, что zip-приложение получателя «понимает» избранный алгоритм.

При шифровании файлов с помощью zip-приложений используются защитные пароли. Для дешифрации архивного файла его получатель тоже должен воспользоваться соответствующим паролем. Необходимо проявлять осторожность при выборе метода доставки пароля. Вероятно, самые безопасные методы доставки пароля - по телефону, по факсу или через курьера. Можно выбрать любой из них, но ни в коем случае не следует передавать пароль по электронной почте в виде обычного текста; в этом случае резко возрастает опасность того, что доступ к зашифрованному файлу получит не имеющий на то полномочий пользователь.

Не забывайте о том, что оснащенные средствами шифрования архиваторы обеспечивают передачу файлов не только по каналам электронной почты. Их можно эффективно использовать для транспортировки данных и с помощью других упомянутых выше методов.

Pretty Good Privacy

Еще один чрезвычайно популярный метод шифрования можно реализовать с помощью программы Pretty Good Privacy. PGP произвела настоящий фурор, когда Фил Циммерман впервые бесплатно опубликовал ее в Internet в 1991 г. В 1996 г. PGP стала коммерческим продуктом, а затем в 1997 г. права на нее были куплены фирмой Network Associates (NAI). В 2002 г. эту технологию приобрела у NAI молодая компания PGP Corporation.

После этого PGP Corporation продала коммерческую версию PGP, которая функционирует в средах Windows и Mac OS X. Текущая версия PGP 9.0, в которой реализованы средства шифрования отдельных файлов и шифрования всего содержимого диска, может быть встроена в AOL Instant Messenger (AIM). Кроме того, PGP 9.0 интегрируется с такими изделиями, как Outlook, Microsoft Entourage, Lotus Notes, Qualcomm Eudora, Mozilla Thunderbird и Apple Mail.

В PGP применяется система шифрования с открытым ключом, предусматривающая генерирование пары ключей шифрования - открытого ключа и секретного ключа. Эти два ключа математически взаимосвязаны таким образом, что зашифрованные с помощью открытого ключа данные могут быть дешифрованы только с помощью секретного ключа. Пользователь PGP генерирует пару «открытый ключ - секретный ключ», после чего публикует открытый ключ в общедоступном каталоге ключей или на Web-узле. Секретный ключ, разумеется, нигде не публикуется и хранится в секрете; им пользуется только его владелец. При расшифровке данных с помощью секретного ключа требуется пароль, но при шифровании данных с помощью открытого ключа это не предусмотрено, поскольку открытыми ключами могут пользоваться все желающие.

Для простоты применения системы PGP ее разработчики реализовали функцию автоматического опроса общедоступных каталогов ключей. Эта функция позволяет, введя в строку поиска почтовый адрес того или иного пользователя, находить его открытый ключ. PGP предоставляет возможность автоматического считывания открытых ключей, которые можно для простоты доступа хранить локально на своей системе в специальной «связке ключей» (keyring) на базе файлов. Опрашивая каталог открытых ключей, PGP позволяет всегда держать в «связке» их самые последние версии. Если пользователь изменяет свой открытый ключ, вы можете получить доступ к обновленному ключу в любой момент, когда он вам потребуется.

Для обеспечения более надежных гарантий аутентичности открытых ключей можно использовать цифровые подписи с помощью ключей других пользователей. Подпись ключа другим пользователем служит дополнительным подтверждением того, что ключ действительно принадлежит человеку, называющему себя его владельцем. Чтобы подтвердить достоверность ключа с помощью цифровой подписи, PGP выполняет некую математическую операцию и добавляет к ключу ее уникальный результат. Затем подпись можно проверить, сравнив ее с подписывающим ключом, который применялся для создания подписи. Этот процесс напоминает процесс подтверждения одним человеком идентичности другого.

Системе PGP доверяют многие, поскольку она давно уже завоевала в отрасли репутацию надежной технологии для защиты информации. Но как бы то ни было, если вы решили использовать PGP или другой метод шифрования данных с помощью открытых ключей, помните, что получатели ваших файлов тоже должны располагать совместимой системой шифрования. Одно из преимуществ системы PGP при использовании электронной почты в качестве канала передачи данных состоит в том, что она поддерживает собственную модель шифрования, а также технологии X.509 и S/MIME, о которых я расскажу далее.

Кроме того, следует отметить еще один момент. Вне зависимости от того, планируется ли использовать PGP, WinZip или другую систему шифрования, если вы хотите в дополнение к шифрованию присоединенных файлов зашифровать содержимое собственно сообщения, потребуется записать сообщение в отдельный файл и тоже зашифровать его. По желанию этот файл с сообщением можно разместить в архиве вместе с другими файлами или присоединить его в качестве файла-вложения.

PKI

Инфраструктура открытых ключей (Public Key Infrastructure, PKI) уникальна, однако принцип ее действия в чем-то напоминает принцип действия PGP. PKI предполагает использование пары ключей - открытого и секретного. Для зашифровки данных, направляемых получателю, отправители применяют его открытый ключ; после того как данные доставляются получателю, он расшифровывает их с помощью своего секретного ключа.

Экран 2. Просмотр содержимого сертификата

Одно существенное отличие состоит в том, что в PKI открытый ключ обычно хранится в формате данных, известном как сертификат. Сертификаты могут содержать намного больше информации, нежели обычные ключи. К примеру, сертификаты обычно содержат дату истечения срока действия, так что мы знаем, когда сертификат и ассоциированный с ним ключ уже не будут действительны. Кроме того, сертификат может включать имя, адрес, номер телефона владельца ключа и другие данные. На экране 2 представлено содержимое сертификата в том виде, в каком оно отображается в окне программы Microsoft Internet Explorer (IE) или Outlook. В определенной степени содержимое сертификата зависит от того, какие именно данные желает разместить в нем владелец.

Как и PGP, PKI позволяет формировать «цепочки доверия», в которых сертификаты могут быть подписаны с помощью сертификатов других пользователей. Более того, появились удостоверяющие центры Certificate Authorities (CA). Это облеченные доверием независимые организации, которые не только выдают собственные сертификаты, но и подписывают другие сертификаты, гарантируя тем самым их подлинность. Как и в случае с PGP и связанными с этой системой серверами ключей, сертификаты могут публиковаться на общедоступных или частных серверах сертификатов либо на серверах LDAP, пересылаться по электронной почте и даже размещаться на Web-узлах или на файловом сервере.

Для обеспечения автоматической проверки подлинности сертификата разработчики клиентов электронной почты и Web-браузеров обычно оснащают свои программы средствами взаимодействия с серверами центров сертификации. В ходе этого процесса вы также сможете получить информацию об отзыве сертификата по тем или иным причинам и, соответственно, сделать заключение о том, что данному сертификату нельзя больше доверять. Разумеется, за услуги центров сертификации по предоставлению и заверению сертификатов иногда приходится платить; цены могут быть разными в зависимости от выбранного центра сертификации. Одни организации предоставляют клиентам бесплатные персональные сертификаты по электронной почте, другие берут за это значительное вознаграждение.

В основе PKI лежит спецификация X.509 (являющаяся производной от спецификации LDAP X). Поэтому сертификаты, выданные одним центром (включая сертификаты, которые вы генерируете для себя), обычно можно использовать на целом ряде платформ. Нужно только, чтобы эти платформы были совместимы со стандартом X.509. Вы можете и сами генерировать сертификаты с помощью любого из имеющихся инструментальных средств, таких как OpenSSL.

Если ваша организация использует службу Microsoft Certificate Services, вы можете запросить сертификат через эту службу. В средах Windows Server 2003 и Windows 2000 Server данный процесс должен протекать примерно одинаково. Следует открыть Web-страницу сервера сертификатов (как правило, она располагается по адресу http://servername/CertSrv ), затем выбрать пункт Request a Certificate. На следующей странице нужно выбрать элемент User certificate request и следовать указаниям Web-мастера до завершения процесса. Если служба сертификатов настроена таким образом, что для выдачи сертификата требуется санкция администратора, система известит вас об этом специальным сообщением, и вам придется дожидаться решения администратора. В иных случаях вы в итоге увидите гиперссылку, которая позволит установить сертификат.

Некоторые независимые центры сертификации, такие как Thwate и InstantSSL компании Comodo Group, предлагают пользователям бесплатные персональные почтовые сертификаты; это простой способ получения сертификатов. Кроме того, такие сертификаты уже будут подписаны выдавшей их инстанцией, что облегчит проверку их подлинности.

Когда дело доходит до использования PKI с целью отправки зашифрованных данных с помощью программы обработки электронной почты, в дело вступает спецификация Secure MIME (S/MIME). Outlook, Mozilla Thunderbird и Apple Mail - вот лишь несколько примеров почтовых приложений, позволяющих задействовать этот протокол. Чтобы отправить адресату зашифрованное почтовое сообщение (включающее или не включающее присоединенные файлы), необходимо иметь доступ к открытому ключу адресата.

Для получения открытого ключа другого пользователя можно просмотреть данные о ключах на сервере LDAP (если только ключ публикуется с использованием протокола LDAP). Другой вариант: можно попросить этого человека направить вам сообщение с цифровой подписью; как правило, при доставке адресату подписанного сообщения оснащенные средствами S/MIME почтовые клиенты присоединяют копию открытого ключа. А можно просто попросить интересующее вас лицо прислать вам сообщение с присоединенным к нему открытым ключом. Впоследствии можно будет хранить этот открытый ключ в интерфейсе управления ключами, который входит в состав вашего почтового клиента. Программа Outlook интегрируется со встроенным в Windows хранилищем сертификатов Certificate Store. При необходимости воспользоваться открытым ключом он всегда будет под рукой.

Шифрование на основе данных об отправителе

Фирма Voltage Security разработала новую технологию - шифрование на основе данных об отправителе (identity-based encryption, IBE). В целом она аналогична технологии PKI, но имеет любопытную особенность. Для дешифации сообщений в IBE используется секретный ключ, но в процессе шифрования обычный открытый ключ не применяется. В качестве такого ключа IBE предусматривает использование почтового адреса отправителя. Таким образом, при отправке получателю зашифрованного сообщения проблемы получения его открытого ключа не возникает. Достаточно иметь адрес электронной почты этого человека.

Технология IBE предполагает хранение секретного ключа получателя на сервере ключей. Получатель подтверждает свои права доступа к серверу ключей и получает секретный ключ, с помощью которого осуществляет дешифрацию содержимого сообщения. Технологию IBE могут применять пользователи Outlook, Outlook Express, Lotus Notes, Pocket PC, а также Research in Motion (RIM) BlackBerry. По словам представителей Voltage Security, IBE выполняется также на любых почтовых системах на базе браузеров под управлением практически любой операционной системы. Вполне вероятно, что такие универсальные решения Voltage Security - именно то, что вам нужно.

Примечательно, что технология IBE применяется в продуктах компании FrontBridge Technologies как средство, облегчающее безопасный обмен зашифрованными почтовыми сообщениями. Вам, наверное, уже известно, что в июле 2005 г. компания FrontBridge была приобретена корпорацией Microsoft, которая планирует интегрировать решения FrontBridge с Exchange; возможно, уже довольно скоро комбинация этих технологий будет предложена потребителям в виде управляемой службы. Если системы обработки электронной почты в вашей организации и у ваших партнеров базируются на Exchange, следите за развитием событий на этом участке.

С учетом всех обстоятельств

Существует множество способов безопасной передачи файлов по каналам Internet, и, несомненно, самый простой и эффективный из них обеспечивается средствами электронной почты. Разумеется, те, кому приходится обмениваться большим количеством файлов, составляющих большие объемы данных, могут рассмотреть возможность использования других методов.

Следует тщательно взвесить, какое количество файлов вы будете передавать, насколько велики они по объему, как часто вам придется передавать эти файлы, кто должен иметь доступ к ним и как они будут храниться по месту получения. С учетом этих факторов вы сможете подобрать оптимальный способ передачи файлов.

Если вы придете к заключению, что лучший вариант для вас - электронная почта, имейте в виду, что по прибытии почты на многих почтовых серверах и почтовых клиентах можно запускать сценарии или выполнять определенные действия на базе правил. С помощью этих функций можно автоматизировать движение файлов как по пути следования на почтовых серверах, так и при поступлении файлов в почтовый ящик.

Марк Джозеф Эдвардс - старший редактор Windows IT Pro и автор еженедельного почтового бюллетеня Security UPDATE (http://www.windowsitpro.com/email ). [email protected]



В условиях нарастающих интеграционных процессов и создания единого информационного пространства во многих организациях ЛАНИТ предлагает провести работы по созданию защищенной телекоммуникационной инфраструктуры, связывающей удаленные офисы фирм в единое целое, а также обеспечение высокого уровня безопасности информационных потоков между ними.

Применяемая технология виртуальных частных сетей позволяет объединять территориально распределенные сети как с помощью защищенных выделенных каналов, так и виртуальных каналов, проходящих через глобальные общедоступные сети. Последовательный и системный подход к построению защищенных сетей предполагает не только защиту внешних каналов связи, но и эффективную защиту внутренних сетей путем выделения замкнутых внутренних контуров VPN. Таким образом, применение технологии VPN позволяет организовать безопасный доступ пользователей в Интернет, защитить серверные платформы и решить задачу сегментирования сети в соответствии с организационной структурой.

Защита информации при передаче между виртуальными подсетями реализуется на алгоритмах асимметричных ключей и электронной подписи, защищающей информацию от подделки. Фактически данные, подлежащие межсегментной передаче, кодируются на выходе из одной сети, и декодируются на входе другой сети, при этом алгоритм управления ключами обеспечивает их защищенное распределение между оконечными устройствами. Все манипуляции с данными прозрачны для работающих в сети приложений.

Удаленный доступ к информационным ресурсам. Защита информации, передаваемой по каналам связи

При межсетевом взаимодействии между территориально удаленными объектами компании возникает задача обеспечения безопасности информационного обмена между клиентами и серверами различных сетевых служб. Сходные проблемы имеют место и в беспроводных локальных сетях (Wireless Local Area Network, WLAN), а также при доступе удаленных абонентов к ресурсам корпоративной информационной системы. В качестве основной угрозы здесь рассматривается несанкционированное подключение к каналам связи и осуществление перехвата (прослушивания) информации и модификация (подмена) передаваемых по каналам данных (почтовые сообщения, файлы и т.п.).

Для защиты данных, передаваемых по указанным каналам связи, необходимо использовать соответствующие средства криптографической защиты. Криптопреобразования могут осуществляться как на прикладном уровне (или на уровнях между протоколами приложений и протоколом TCP/IP), так и на сетевом (преобразование IP-пакетов).

В первом варианте шифрование информации, предназначенной для транспортировки по каналу связи через неконтролируемую территорию, должно осуществляться на узле-отправителе (рабочей станции - клиенте или сервере), а расшифровка - на узле-получателе. Этот вариант предполагает внесение существенных изменений в конфигурацию каждой взаимодействующей стороны (подключение средств криптографической защиты к прикладным программам или коммуникационной части операционной системы), что, как правило, требует больших затрат и установки соответствующих средств защиты на каждый узел локальной сети. К решениям данного варианта относятся протоколы SSL, S-HTTP, S/MIME, PGP/MIME, которые обеспечивают шифрование и цифровую подпись почтовых сообщений и сообщений, передаваемых с использованием протокола http.

Второй вариант предполагает установку специальных средств, осуществляющих криптопреобразования в точках подключения локальных сетей и удаленных абонентов к каналам связи (сетям общего пользования), проходящим по неконтролируемой территории. При решении этой задачи необходимо обеспечить требуемый уровень криптографической защиты данных и минимально возможные дополнительные задержки при их передаче, так как эти средства туннелируют передаваемый трафик (добавляют новый IP-заголовок к туннелируемому пакету) и используют различные по стойкости алгоритмы шифрования. В связи с тем, что средства, обеспечивающие криптопреобразования на сетевом уровне полностью совместимы с любыми прикладными подсистемами, работающими в корпоративной информационной системе (являются «прозрачными» для приложений), то они наиболее часто и применяются. Поэтому, остановимся в дальнейшем на данных средствах защиты информации, передаваемой по каналам связи (в том числе и по сетям общего доступа, например, Internet). Необходимо учитывать, что если средства криптографической защиты информации планируются к применению в государственных структурах, то вопрос их выбора должен решаться в пользу сертифицированных в России продуктов.

В работе любой организации зачастую возникает потребность в обмене конфиденциальной информацией между двумя или более лицами. Самое простое решение - передавать ее устно либо лично в бумажном виде. Однако, если такой возможности нет, а также при необходимости передачи информации именно в электронном виде обычно используются криптографические преобразования. Несмотря на широкое применение, криптография имеет свои недостатки - факт передачи не скрывается и при недостаточной стойкости алгоритма шифрования появляется возможность восстановления информации нарушителем. Кроме того, ввиду сложности криптографических преобразований накладывается ограничение на скорость передачи данных, что может быть критичным при трансляции по открытому каналу больших объемов документарной или мультимедийной информации (видео или звук), например, в режиме телеконференции.

На взгляд авторов, альтернативой криптографическим преобразованиям в этом случае может стать комплексный подход к организации обмена конфиденциальной информацией, включающий стеганографические преобразования (предполагающие сокрытие самого факта передачи конфиденциальных сведений) и применение различных методов аутентификации и балансировки нагрузки сети.

Целью данного исследования являются разработка методики скрытой передачи информации в видеопотоке и реализация ее в виде программного комплекса. В основе методики лежит приоритизация трафика одних пользователей по отношению к другим. В ходе работы был создан собственный алгоритм управления трафиком, который применяется в данной методике для организации защищенного обмена информацией.

Возможные области применения алгоритма - балансировка нагрузки сети, привилегированный доступ к ресурсам, организация скрытого канала передачи сообщений.

К программной реализации алгоритма предъявляются следующие требования:

Прозрачность для пользователя;

Отказоустойчивость;

- надежное хранение секретных ключей и системных данных ограниченного доступа;

Целесообразность применения, то есть выигрыш в скорости, качестве обслуживания или защищенности;

Совместимость с различным сетевым оборудованием.

Рассмотрим алгоритм «Метка привилегий» подробнее. В обычном режиме пакеты передаются непосредственно от источника адресату, минуя сервер. Это обычная локальная сеть организации. Перед предполагаемым началом специального режима администратор запускает службу на сервере. Сеть переходит в режим ожидания.

Принимается пакет, проверяется, есть ли метка начала специального режима, если она есть, осуществляется переход к специальному режиму, иначе пакет доставляется адресату и принимается новый. Структура пакета показана на рисунке 1.

Специальный режим. Проверяется аутентификационная информация отправителя пакета. Наглядно работа сервера показана в виде блок-схемы на рисунке 2.

На рисунке 3 представлена схема отправки пакетов адресату. Все пакеты проходят через сервер, где выполняется чтение метки, соответствующей адресу получателя. При удачной аутентификации пакет направляется адресату.

Клиент запускает службу на своем компьютере. Служба проверяет, запущен ли сервер. Если сервер не запущен, в журнале программы фиксируется запись о возникшей ошибке и происходит переключение в режим источник-адресат. Если сервер запущен, проверяется, есть ли аппаратный ключ. Если аппаратного ключа нет, фиксируется ошибка и происходит возврат в режим источник-адресат. Если аппаратный ключ есть, осуществляется переход в режимы источник-сервер и сервер-адресат.

В режимах источник-сервер и сервер-адресат отправка сообщений происходит следующим образом. В пакет добавляются информация о пользователе, метка привилегии и скрытые данные. Пакет отсылается. Прием сообщений выполняется так: принятое сообщение записывается в буфер; согласно таблице стеганографических преобразований выделяются пакеты со скрытой информацией; происходит сбор конфиденциальной информации (рис. 4).

Методика организации защищенного канала

Защищенный канал передачи информации решает задачи защиты от несанкционированного доступа узлов сети, между которыми происходит передача информации, и самой информации в процессе передачи по открытым каналам связи.

На основании алгоритма «Метка привилегий» была разработана методика организации защищенного канала передачи информации с управлением трафиком при передаче.

Рассмотрим этапы, которые включает данный способ обмена конфиденциальной информацией для пользователя.

1. Предъявляется аутентификатор (электронный ключ).

2. При удачной аутентификации в программу вводится необходимая конфиденциальная информация.

3. Начинается видеоконференция (а во время нее - отправка конфиденциальной информации).

4. В ходе видеоконференции также принимается и распознается информация от другого участника обмена данными.

5. Конференция завершается.

Таким образом, для организации защищенного канала пользователю необходимо иметь установленную программу «Метка привилегий», электронный ключ с аутентификационными данными, веб-камеру и доступ в сеть для организации связи.

Аутентификация

В данной методике процедура аутентификации используется для авторизации пользователя-опе-ратора перед началом работы с клиентским программным модулем и подтверждения подлинности сообщения с меткой привилегий, пришедшего от клиента на сервер системы.

Таким образом, требуется применить одношаговую схему аутентификации по аппаратному ключу и по полю данных в заголовке пакета TCP. Наиболее простым и эффективным способом решения этой задачи будет применение алгоритма вычисления имитовставки по ГОСТу 28147-89, поскольку он обеспечивает высокую криптостойкость, позволяет варьировать длину аутентификационного поля в пакете и эффективно реализуется на современных аппаратных платформах ПЭВМ общего назначения. При этом для решения обеих задач может применяться один и тот же ключ, хранимый на предъявляемом оператором ключевом носителе. При аутентификации пользователя для входа в систему (при запуске клиентского приложения) на сервер отправляется тестовое сообщение, зашифрованное на ключе с предъявленного ключевого носителя. Если серверу удалось расшифровать его ключом, соответствующим легальному пользователю данного узла сети, аутентификация считается пройденной и сервер сообщает об этом клиентскому приложению.

Аутентификация передаваемых TCP-пакетов осуществляется по стандартной схеме, когда информационное поле пакета зашифровывается в режиме вычисления имитовставки и добавляется в поле аутентификации, а сервер проверяет корректность вычисленной имитовставки, используя сохраненный в своей БД ключ шифрования.

Следует отметить, что для обеспечения надежности такой схемы при высокой загрузке сети ключи шифрования для всех пользователей необходимо менять не реже одного раза в месяц, что в случае использования системы при работе в локальной сети организации несложно и решается организационно-распорядительными методами.

Стеганография

При стеганографическом преобразовании добавление контейнеров должно происходить в реальном времени, кроме того, необходимо обеспечить стойкость ключа.

Наиболее часто для модификации видеотрафика и встраивания стегоконтейнеров применяют метод наименее значащих битов. Этот метод неустойчив к искажению передаваемой в стегоконтейнерах информации, например, можно обнулять все последние биты, что уничтожит всю конфиденциальную информацию. Также можно восстанавливать скрытую информацию, используя статистические закономерности.

Особенностями применения стеганографии в разрабатываемой методике для видеоконференций являются следующие:

Стегоконтейнеры встраиваются в реальном времени;

Открытая передаваемая информация имеет большой размер - увеличивается нагрузка на канал;

В стегоконтейнерах необходимо передавать аутентификационные метки;

Добавление контейнеров должно проходить в прозрачном для пользователя режиме;

Аутентификация должна быть простой для пользователя и выполняться в автоматическом режиме;

Передача аутентификационных меток должна проводиться постоянно.

Информацию о номерах пакетов можно передавать различными способами. Суть первого способа передачи: в первый пакет включается смещение до следующего пакета с конфиденциальной информацией и т.д., то есть каждый пакет со стегоконтейнером в начале поля данных будет содержать информацию о номере следующего пакета со стегоконтейнером. Важно, что задается смещение, а не номер пакета, так как в общем случае на кодирование смещения потребуется меньшее количество бит.

В настройках программы необходимо определить, какое количество бит в начале пакета будет выделено под адрес следующего пакета. Например, если расстояние между пакетами не превышает 100, на кодирование смещения необходимо выделить 7 бит. Каждый выделенный под смещение бит позволяет существенно увеличить расстояние между пакетами и тем самым сгладить статистические характеристики видеопотока.

Недостаток метода в том, что, перехватывая первый пакет, злоумышленник узнает номер следующего пакета и таким образом постепенно может восстановить всю последовательность.

Второй способ передачи - запись таблицы, содержащей номера пакетов с конфиденциальной информацией, на аппаратные ключи до начала видеоконференции. Все преобразования трафика происходят на клиентских машинах, тем самым обеспечивается дополнительная безопасность, так как информация в открытом виде не перемещается по сети.

Недостаток данного метода в том, что получение злоумышленником аппаратного ключа позволяет ему восстановить переданную конфиденциальную информацию.

Третьим способом передачи таблицы является передача ее на материальном носителе, например в бумажном виде. Недостатки этого метода: ввод таблицы клиентом в программу вручную и возможность перехвата ключевой информации нарушителем.

Программная реализация

Рассмотрим работу программы, реализующей данный алгоритм. Необходимо отметить, что она состоит из клиентской и серверной частей.

Клиентская часть запускается в фоновом режиме, предоставляя минимальный набор возможностей:

Участвовать в видеоконференции;

Отправить конфиденциальную информацию адресату;

Принять и распознать конфиденциальную информацию.

Причем пользователь не должен задумываться о выборе из видеопотока необходимой скрытой информации - сборка данных из разрозненных пакетов происходит автоматизированно клиентской частью приложения. Данный процесс выполняется на клиентской машине для того, чтобы информация не курсировала в сети в открытом виде, так как, если восстанавливать ее на сервере и затем передавать, участок от адресата до сервера будет потенциально опасным.

Серверная часть предназначена для админи- стратора. При первом запуске администратор вручную добавляет IP-адреса своей сети, затем переходит к назначению меток. Напротив привилегированного адреса ставится отметка. Администратор также задает размер смещения (количество бит, выделенных в начале пакета), так как, если задавать его клиентской частью приложения, могут возникнуть коллизии, когда размеры смещений у разных пользователей не совпадают.

Таким образом, администратор вручную выполняет следующие действия:

Ввод IP-адреса пользователей видеоконференции;

Выбор размера смещения под адрес;

Ввод пользовательских ключей для осуществления аутентификации.

Служебная информация, необходимая для функционирования программы, конфиденциальная информация и непосредственно ключи хранятся как на сервере, так и на клиентских рабочих местах.

На сервере хранится информация об аппаратных ключах пользователей, о паролях пользователей, о размерах смещений под адрес, IP-адреса пользователей, а также метка начала специального режима.

На клиентском рабочем месте хранятся аппаратный ключ, пароль, конфиденциальная информация, информация об IP-адресах других участников информационного обмена.

Необходимо отметить, что интерфейс данной программы не подразумевает множества тонких настроек. Программа предназначена для того, чтобы обеспечить администратору простое представление назначения меток. Все преобразования она будет производить на уровне пакетов самостоятельно.

Программа предполагает наличие двух видов пользователей - клиент и администратор.

Клиент при помощи клиентской части приложения и аутентификатора авторизуется в системе и получает доступ к видеоконференции, в ходе которой передает и получает конфиденциальную информацию. Он не имеет доступа к настройкам сети, знает ключ, с помощью которого можно выделить стегоконтейнеры и собрать конфиденциальную информацию в ее исходное состояние.

Администратор управляет настройками сети с помощью серверной части приложения. Он добавляет и удаляет пользователей, разрешенные IP-адреса, не имеет доступа к конфиденциальной информации как таковой и не знает ключа, с помощью которого можно выделить стегоконтейнеры из общего потока.

Программа должна поддерживать операционные системы семейств Windows и Linux. Важно, чтобы система была кроссплатформенной, так как сеть может быть гетерогенной, особенно для удаленных пользователей.

Для реализации алгоритма «Метки привилегий» необходимо модифицировать заголовки TCP-пакетов. Вначале была изучена спецификация RFC 793 (описывающая структуру пакета TCP) и подобраны инструменты - библиотеки PCAP и libnet. Обе библиотеки являются кроссплатформенными. С их помощью можно создать собственную программу, реализующую функции обработки TCP-заголовков.

В качестве прототипа была создана собственная реализация программы, позволяющей создать сокет либо в состоянии сервера (ожидает подключение клиента), либо в состоянии клиента (пытается подключиться к серверу). Были учтены результаты предыдущих разработок в университете по смежной тематике .

Созданная TCP-программа обеспечивает устойчивое соединение, самостоятельно формируются пакеты. В результате имеется возможность добавлять в поле опций TCP-заголовка собственную информацию. Для создания основной программы осталось сформировать на данном прототипе сервер и клиента, добавить пользовательский интерфейс, учесть требования стандартов и нормативных актов .

Задача сервера - перенаправлять пакеты клиентам. Необходимо задать список IP-адресов, с которых можно подключаться к серверу. Кроме того, администратор должен конфигурировать конференции и указывать клиентов, участвующих в них. Конфигурация сервера задается в текстовом файле, а сам сервер запускается как консольное приложение.

В заключение можно сделать следующие выводы. Цель работы - разработка методики организации защищенного канала передачи конфиденциальной информации путем встраивания стегоконтейнеров в видеопоток - была достигнута. Разработан алгоритм организации логического канала на основе меток привилегий, выбраны способы аутентификации. Были определены требования к программной реализации. Создан механизм стеганографических преобразований. В целом работа представляет собой алгоритм приоритизации трафика «Метка привилегий», перечень необходимых компонентов для организации защищенного канала, методику встраивания стегоконтейнеров, описание требований к программной реализации, первоначальную версию программного продукта. Планируются дальнейшее совершенствование алгоритма, добавление новых функций и более удобного для пользователя интерфейса, а также реализация всего вышеперечисленного в виде полноценного программного комплекса.

Литература

1. Литвиненко В.А., Ховансков С.А. Распределенные вычисления в сети методом коллективного принятия решения // Изв. ЮФУ. Технич. науки: тематич. вып.: Безопасность телекоммуникационных систем. Таганрог: Изд-во ТТИ ЮФУ, 2008. № 3 (80). С. 110-113.

2. Свентусов С.В. Методы снижения загрузки серверов аудиоконференций // Изв. СПбГЭУ (ЛЭТИ), 2008. Вып. 2. С. 25-30.

3. Шейда В.В. Использование протоколов TCP И UDP для защищенной передачи информации по SSL-VPN-туннелям: докл. ТГУСУР, 2010. С. 225-229.

4. Самуйлов К.Е. Метод решения задачи разделения ресурсов мультисервисной сети между виртуальными частными сетями с одноадресными и многоадресными соединениями // Вестн. РУДН. Сер.: Математика, информатика, физика. 2010. № 2 (1). С. 42-53.

5. Антамошкин А.Н., Золотарев В.В. Алгоритм расчета прогнозируемого трафика при проектировании распределенных систем обработки и хранения информации // Вестн. СибГАУ, Красноярск, 2006. № 1. С. 5-10.

6. Бондарь И.В., Золотарев В.В., Попов А.М. Методика оценки защищенности информационной системы по требованиям стандартов информационной безопасности // Информатика и системы управления. 2010. Вып. 4 (26). С. 3-12.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: