Настройки "глобальных параметров" драйвера для видеокарт NVidia на максимальную производительность, без потери в качестве. GPU ускорение

  • Перевод

Привет, меня зовут Тони Элбрект (Tony Albrecht), я один из разработчиков новой команды Render Strike Team под управлением Sustainability Initiative в League of Legends . Моей команде поручили внести усовершенствования в движок рендеринга LoL , и мы с радостью принялись за работу. В этой статье я расскажу, как движок работает сейчас . Надеюсь, она заложит хороший фундамент, на основании которого я позже смогу рассказывать об вносимых нами изменениях. Эта статья станет для меня хорошим предлогом самому поэтапно изучить процесс рендеринга, чтобы мы, как команда, полностью понимали, что же происходит внутри.

Я подробно объясню, как LoL выстраивает и отображает каждый отдельный кадр игры (не забывайте, что на самых мощных машинах это происходит более 100 в секунду). Рассказ в основном будет техническим, но я надеюсь, что его легко будет усвоить даже тем, кто не имеет опыта в рендеринге. Для ясности я пропущу некоторые сложные моменты, но если вы захотите узнать подробности, то напишите об этом в комментариях [к оригиналу статьи].

Сначала я немного расскажу об имеющихся у нас графических библиотеках. League должна работать как можно эффективнее на широком диапазоне платформ. На самом деле, сейчас Windows XP является четвёртой по популярности версией ОС, в которой запускают игру (популярнее только Windows 7, 10 и 8). На Windows XP ежемесячно играют в десять миллионов сессий игры, поэтому для сохранения обратной совместимости нам нужно поддерживать DirectX 9 и приходится использовать только функции, которые он предоставляет. Также мы используем сопоставимый набор функций OpenGL 1.5 на машинах с OS X (скоро положение изменится).

Итак, давайте приступим! Для начала мы узнаем, как же компьютеры на самом деле отрисовывают изображения.

Рендеринг для начинающих

В большинстве компьютеров есть ЦП (центральный процессор) и ГП (графический процессор). ЦП выполняет логику и вычисления игры, а ГП получает данные треугольников и текстур от ЦП и отображает их на экране как пиксели. Небольшие программы ГП, называемые шейдерами, позволяют влиять на способ выполнения рендеринга. Например, можно изменить способ наложения текстур на треугольники или дать ГП команду выполнять расчёты для каждого тексела в текстуре. Таким образом, мы можем просто накладывать текстуру на треугольник, добавлять или умножать несколько текстур на треугольнике, или выполнять более сложные процессы, такие как рельефное текстурирование, расчёт освещения, отражений или даже высокореалистичных шейдеров кожи . Все видимые объекты рисуются в неотображаемом буфере кадра, который отображается только после завершения всего рендеринга.

Давайте рассмотрим пример. Вот изображение Гарена (Garen), состоящее из 6 336 треугольников, составляющих «проволочный» каркас и сплошную бестекстурную модель. Эта модель создана нашими художниками и экспортирована в формат, который движок League может загружать и анимировать. (Заметьте, что у Гарена неплоское затенение: это ограничение приложения, используемого для исследования рендеринга).

Эта модель без текстуры не только скучная, но и не отображает узнаваемого Гарена. Чтобы вдохнуть в Гарена жизнь, нужно нанести текстуру.

Перед загрузкой текстуры Гарена хранятся на диске в виде файлов DDS или TGA, которые сами по себе выглядят как сцена из ужастика. После правильного наложения на модель у нас получится вот такой результат:

У нас уже начинает что-то получаться. Шейдер, рендерящий наши сетки со скиннингом, не просто наносит текстуру, но мы рассмотрим это позже.

Это были основы, но LoL нужно рендерить гораздо больше, чем модель и текстуру персонажа. Давайте рассмотрим этапы, составляющие рендеринг следующей сцены:

Этап рендеринга 0: туман войны

Прежде чем начинать прорисовку частей сцены, нужно сначала подготовить туман войны и тени (у-у-у, «туман и тени», как зловеще!). Туман войны хранится центральным процессором как сетка размером 128x128, которая потом масштабируется до квадратной текстуры 512x512 (подробнее об этом можно почитать в статье «A Story of Fog and War»). Затем мы размываем эту текстуру и наносим её для затемнения соответствующих областей игры и мини-карты.


Этап рендеринга 1: тени

Тени - неотъемлемая часть 3D-сцены. Без них объекты будут казаться плоскими. Для создания теней, которые выглядят, как отбрасываемые миньоном или чемпионом, нам нужно рендерить их из точки источника света. Расстояние от источника света до отбрасывающего тень персонажа хранится для каждого пикселя в компонентах RGB, и мы обнуляем компонент альфа-прозрачности. Это можно увидеть ниже. Слева у нас есть поле высоты теней в RGB осаждаемой башни, миньонов и двух чемпионов. Справа у нас есть только компонент альфа-прозрачности. Эти текстуры обрезаны для более чёткого отображения деталей теней - миньоны внизу, башня и чемпионы - наверху.


В конце мы размываем тени, чтобы придать им красивую плавную границу (вместе с недавно добавленной оптимизацией , повышающей частоту кадров). В результате мы получаем текстуру, которую можно наложить на статичную геометрию для получения эффекта теней.

Этап рендеринга 2: статичная геометрия

Имея подготовленные текстуры тумана войны и теней, мы начинаем отрисовывать в кадре остальную часть сцены. В первую очередь статичную геометрию (она называется так, потому что неподвижна). Эта геометрия сочетает информацию тумана войны и теней со своей основной текстурой, что даёт нам следующую сцену:

Заметьте, что тени миньонов и туман войны заползают на края сцены. Рендерер Ущелья призывателей (Summoner"s Rift) не рендерит динамических теней для статичной геометрии. Поскольку основной источник света не перемещается, мы запекаем тени статичных сеток на их текстурах. Это даёт художникам больше контроля над внешним видом карты, а также позволяет повысить производительность (не требуется рендеринг теней статичных сеток). Тени отбрасывают только миньоны, башни и чемпионы.

Этап рендеринга 3: сетки со скиннингом

Итак, у нас есть рельеф и тени, поэтому мы можем начать накладывать на них объекты. Сначала накладываются миньоны, чемпионы и башни, т.е. все объекты с подвижными шарнирами, которые должны реалистично двигаться.

Каждая анимированная сетка состоит из скелета (каркаса из иерархически соединённых костей) и из сетки треугольников (см. выше изображение Гарена). Каждая вершина каждого треугольника привязана к одной-четырём костям, поэтому при перемещении костей вершины перемещаются с ними как кожа (skin). Поэтому их называют «сетками со скиннингом». Наши талантливые художники создают анимации и сетки для всех объектов, а потом экспортируют их в формат, который загружается в League при запуске игры.


На изображениях выше показаны все кости сетки Гарена. На изображении слева показаны все его кости (с названиями). На изображении справа голубым показаны выбранные вершины, а жёлтыми линиями показаны связи с костями, управляющие их положением.

Шейдеры сеток со скиннингом не просто рисуют сетки со скиннингом в буфер кадра, они также рендерят в другой буфер их отмасштабированную глубину, которую мы позже используем для отрисовки контуров. Кроме того, шейдеры скиннинга выполняют расчёт отражений Френеля, излучаемого освещения, вычисляют отражения и изменяют освещение для тумана войны.

Этап рендеринга 4: контуры (очерчивание)

По умолчанию очерчивание для сеток со скиннингом включено, что обеспечивает более чёткие контуры. Это позволяет выделить сетки со скиннингом на фоне, особенно в областях с низким контрастом. На изображениях ниже очерчивание отключено (слева) и включено (справа).


Контуры создаются получением отмасштабированной глубины из предыдущего этапа и её обработкой оператором Собеля для извлечения грани, которую мы рендерим на сетке со скиннингом. Эта операция выполняется отдельно для каждой сетки. Также существует метод возврата, использующий буфер шаблонов для графических процессоров, которые не могут выполнять рендеринг нескольких объектов одновременно.

Этап рендеринга 5: трава

Чтобы определить, что задействуется при рендеринге воды и травы, давайте посмотрим на другую сцену.

Вот кадр без воды и травы, просто статичная фоновая геометрия и несколько сеток со скиннингом.

Заметьте, что тени травы уже являются частью текстуры статичного рельефа и не рендерятся динамически. Затем мы добавляем траву:

Пучки травы на самом деле являются сетками со скиннингом. Это позволяет нам анимировать их при прохождении по ним персонажей и придать приятное колыхание от ветерка в Ущелье призывателей.

Этап рендеринга 6: вода

После травы мы рендерим воду с помощью полупрозрачных сеток со слегка анимированными текстурами воды. Затем мы добавляем листья кувшинок, рябь вокруг камней и у берега, насекомых. Все эти объекты анимированы, чтобы внести в сцену ощущение жизни.

Для усиления эффекта воды (он может быть слишком слабым) я сохранил прозрачность воды и проигнорировал геометрию под ней. Это подчеркнуло эффекты воды, чтобы мы могли лучше учитывать их в анализе.

Выделив всю рябь как «проволочные» каркасы, мы получим:

Теперь мы чётко можем видеть эффекты воды по берегам реки, а также вокруг камней и кувшинок.

При нормальном рендеринге и анимации вода выглядит следующим образом:

Этап рендеринга 7: декали

После наложения травы и воды мы добавляем декали - простые геометрические элементы с плоским текстурированием, которые накладываются поверх рельефа, например, индикатор дальности действия башни на рисунке ниже.

Этап рендеринга 8: особые контуры

Здесь мы имеем дело с более толстыми контурами, включаемыми через события мыши или особыми состояниями активации, как в случае контура башни на рисунке ниже. Это делается почти так же, как создавались контуры сеток со скиннингом, но здесь мы ещё и размываем контуры, чтобы сделать их более толстыми. Такое выделение заметно ещё сильнее, потому что выполняется в процессе рендеринга позже и может перекрывать уже наложенные эффекты.

Этап рендеринга 9: частицы

Следующая стадия - одна из самых важных: частицы. Я уже писал о частицах в этой статье . Каждое заклинание, бафф и эффект - это система частиц, которую нужно анимировать и обновлять. В рассматриваемой нами сцене не так много действия, как, например, в командном бою «5 на 5», но всё равно здесь довольно много отображаемых частиц.

Если мы рассмотрим только частицы (отключив всю фоновую сцену), то получим следующую картину:

Отрендерив треугольники, составляющие частицы, фиолетовыми контурами (без текстур, только геометрию), мы получим следующее:

Если отрисовывать частицы нормально, то мы получим более знакомый вид.

Этап рендеринга 10: эффекты постобработки

Итак, базовые части сцены уже отрендерены и мы можем придать ей немного больше «блеска». Делается это в два этапа. Сначала мы выполняем проход сглаживания (anti-alias, AA). Он помогает сгладить зазубренные края, делая весь кадр более чётким. В статичном изображении этот эффект почти незаметен, но он сильно помогает в устранении «мерцания пикселей», которое может возникать при перемещении высококонтастных граней по экрану. В LoL мы используем алгоритм сглаживания с быстрой аппроксимацией Fast Approximate Anti-Aliasing (FXAA).

Изображение слева - это миньон до FXAA, а справа - после сглаживания. Заметьте, как сглаживаются края объекта.

После завершения прохода FXAA мы выполняем проход гамма-коррекции, позволяющий отрегулировать яркость сцены. В качестве оптимизации мы недавно добавили эффект снижения насыщенности экрана смерти в проход гамма-коррекции , что позволило избавиться от необходимости замены всех шейдеров текущих видимых сеток для вариантов смертей, у которых раньше насыщенность снижалась отдельно.

Этап рендеринга 11: урон и полоски здоровья

Затем мы рендерим все игровые индикаторы: полоски здоровья, текст урона, экранный текст, а также все полноэкранные эффекты, не относящиеся к постобработке, такие как эффект урона на изображении ниже.

Этап рендеринга 12: интерфейс

И, наконец, отрисовывается интерфейс пользователя. Все тексты, значки и предметы отрисовываются на экране как отдельные текстуры, перекрывая всё, находящееся под ними. В анализируемом нами случае на отрисовку интерфейса потребовалось примерно 1 000 треугольников - около 300 на мини-карту и 700 - на всё остальное.

Собираем всё вместе


И мы получаем полностью отрендеренную сцену. Во всей сцене содержится около 200 000 треугольников, 90 000 из них используется под частицы. 28 миллионов пикселей отрисовываются за 695 вызовов отрисовки. Чтобы в игру можно было играть, вся эта работа должна выполняться как можно быстрее. Чтобы достичь 60 и более кадров в секунду, все этапы нужно пройти менее чем за 16,66 миллисекунд. И это только расчёты на стороне графического процессора: вся игровая логика, обработка ввода игрока, столкновения, обработка частиц, анимации и отправка команд на рендеринг тоже должны выполняться за это же время в центральном процессоре. Если вы играете с 300 fps, то всё происходит меньше чем за 3,3 миллисекунды!

Зачем выполнять рефакторинг рендерера?

Теперь вы должны представлять сложности, связанные с рендерингом единственного кадра игры League . Но это только сторона вывода данных: то, что вы видите на экране - это результат тысяч вызовов функций нашего движка рендеринга. Он постоянно изменяется и эволюционирует, чтобы лучше соответствовать современным потребностям рендеринга. Это привело к тому, что в базе кода League сосуществуют разные формы кода рендеринга, потому что нам нужно учитывать новое и поддерживать старое оборудование. Например, Ущелье призывателей (Summoner’s Rift) выполняет рендеринг немного иначе, чем Воющая бездна (Howling Abyss) и Проклятый лес (Twisted Treeline). Существуют части рендерера, оставшиеся от старых версий League , и части, которые пока так и не раскрыли весь свой потенциал. Задача команды Render Strike Team - взять весь код рендеринга и произвести его рефакторинг , чтобы весь рендеринг выполнялся через один и тот же интерфейс. Если мы хорошо выполним свою задачу, то игроки совершенно не заметят разницы (кроме, возможно, небольшого увеличения скорости в разных моментах). Но после того, как мы закончим, у нас появится отличная возможность вносить одновременные изменения во все игровые режимы rendering Добавить метки

Вопрос одного из пользователей

Доброго времени суток. Можно ли как-то повысить производительность видеокарты NVIDIA (GeForce), то бишь увеличить FPS? Видеокарта у меня уже довольно старая, а запустить парочку игр - желание не преодолимое ...

Здравствуйте!

99% вопросов по поводу производительности видеокарты задают любители игр. Именно в играх, если видеокарта устарела и не тянет, вы начнете замечать притормаживания, картинка дергается, идет рывками, и играть становится очень не комфортно.

Чтобы увеличить количество FPS (это кол-во кадров в секунду, чем выше этот параметр - тем лучше!), выдаваемое видеокартой, можно прибегнуть к разным способам: разогнать видеокарту, уменьшить качество графики в настройках игры, задать оптимальные параметры драйвера видеокарты (с прицелом на производительность ). Вот о тонкой настройки видеокарты, я и напишу пару строк в этой статье...

Примечание! Возможно вам будут интересны следующие статьи по теме:

  • ускорение видеокарты AMD -
  • ускорение видеокарты IntelHD -
  • как узнать и повысить FPS в играх - несколько способов:

Тонкая настройка драйвера видеокарты NVIDIA // для повышения производительности

Важная заметка!

Многие пользователи трактуют и понимают понятие "производительность" совсем по разному. В этой статье я буду отталкиваться от параметра FPS (именно в нем мерить производительность). Чем выше FPS - тем выше производительность!

Чтобы измерить текущее количество FPS в вашей игре - рекомендую воспользоваться программой FRAPS (о ней я рассказывал в этой статье: ).

Задайте в настройках FRAPS кнопку для показа количества FPS - и в верхнем углу экрана, после запуска игры, вы увидите значение этого параметра. Кстати, рекомендую его запомнить, чтобы сравнить с показателем, который будет после нашей настройки видеокарты...

В левом углу экрана FRAPS показывает желтыми цифрами количество кадров в секунду - то есть FPS!

Как войти в панель управления NVIDIA

Первое, что нужно сделать - это войти в панель управления и настроек NVIDIA (GeForce). Сделать это можно разными путями: например, самый простой, это щелкнуть в любом месте рабочего стола правой кнопкой, и во всплывшем контекстном меню выбрать нужную ссылку (см. скриншот ниже).

Как войти в панель управления NVIDIA // GeForce - Способ №1: с рабочего стола

Еще один способ - это зайти в панель управления Windows, затем открыть раздел "Оборудование и звук" , в этом разделе должна быть заветная ссылка (см. скрин ниже).

Способ №2 - через панель управления Windows // панель управления NVIDIA

Если такой ссылки на настройки NVIDIA у вас нет - то вероятнее всего у вас просто не установлены драйвера. Многие пользователи, например, после установки Windows вообще не обновляют драйвера, и пользуются теми, что установила сама Windows... В принципе, ничего плохого в этом нет - просто вам будут недоступны многие функции, в том числе и тонкая настройка видеокарты.

утилиты для поиска и обновления драйверов -

Быстрая настройка NVIDIA с упором на производительность

В панели управления видеокартой откройте раздел "Параметры 3D/Регулировка настроек изображения" , далее поставьте ползунок в режим "Пользовательские настройки с упором на производительность" и двиньте его до конца в левую часть (см. показательный скриншот ниже).

После чего сохраните настройки и попробуйте запустить игру снова. Как правило, даже такая простая настойка помогает поднять количество FPS.

Глобальные параметры

Гораздо более продуктивно настроить видеокарту поможет раздел "Управление параметрами 3D" , где все основные параметры можно задать в ручном режиме.

Для повышения FPS в играх, нужно задать следующее:

  1. Анизотропная фильтрация : влияет на производительность видеокарты очень сильно, поэтому ее отключаем.
  2. Сглаживание прозрачности : помогает сделать в играх более качественную картинку воды (например). Ресурсов "ест" прилично, поэтому так же отключаем. Да и вообще, все сглаживания можно отключить !
  3. Тройная буферизация : выключаем;
  4. Вертикальная синхронизация (V-Sync) : параметр, в некоторых играх, влияет очень сильно на количество выдаваемых кадров, поэтому выключаем;
  5. Включить масштабируемые текстуры : нет;
  6. Ограничение расширения : выключаем;
  7. Режим управления электропитанием : ставим режим максимальной производительности;
  8. Максимальное количество заранее подготовленных кадров : 1;
  9. Ускорение нескольких дисплеев/смешанных ГП : Режим однодисплейной производительности;
  10. Фильтрация текстур (анизотропная оптимизация по выборке): выключаем;
  11. Фильтрация текстур (отрицательное отклонение УД): привязка;
  12. Фильтрация текстур (качество): ставим ползунок на производительность;
  13. Фильтрация текстур (трилинейная оптимизация): выключаем;
  14. Фильтрация текстур (анизотропная оптимизация фильтрацией): выключаем;
  15. Вертикальный синхроимпульс : ставим адаптивный;
  16. Потоковая оптимизация : выключаем;
  17. PhysX : ЦП.

Замечание! Некоторые режимы и параметры, перечисленные выше, могут отсутствовать в ваших настройках (либо называться несколько иначе ("трудности" перевода )). Все зависит от модели вашей видеокарты и версии драйвера (пример, как выглядит эта вкладка, показан на скриншоте ниже).

Панель управления NVIDIA: глобальные настройки

После введенных настроек не забудьте их сохранить, в некоторых случаях желательно перезагрузить компьютер, и только потом переходить к тестам (замеру FPS). Довольно часто производительность видеокарты вырастает существенно: до 15-20% (согласитесь, что без разгона и каких-то не было рискованных дел - ускорить на такой процент, весьма не плохо)!

Важно! Картинка в игре может несколько ухудшиться. Но такова плата: видеокарта начинает работать быстрее, экономя на качестве (ведь фильтры и сглаживания мы все отключили...). Но хочу заметить, что обычно, картинка хоть и становится хуже, но далеко не на столько, чтобы серьезно помешать вам приятно провести время за любимой игрой...

Программные настройки

Если у вас тормозит какая-то конкретная игра (а с остальными все в норме) - то есть смысл изменять не глобальные параметры, а параметры для отдельно взятого приложения! Дабы в настройках NVIDIA для этого есть специальная вкладка. Таким образом, с низким качеством графики у вас будет запускаться какая-то одна конкретная игра, а не все.

Сами параметры в этой вкладке нужно задавать аналогично тем, которые я приводил чуть выше.

Панель управления NVIDIA: программные настройки

Чтобы ускорить работу игр на вашем компьютере, дополнительно посоветую следующее:

На этом у меня всё, за дельные советы и дополнения - отдельное мерси. Удачи!

02Окт

Что такое Рендер (Рендеринг)

Рендер (Рендеринг) — это процесс создания финального изображения или последовательности из изображений на основе двухмерных или трехмерных данных. Данный процесс происходит с использованием компьютерных программ и зачастую сопровождается трудными техническими вычислениями, которые ложатся на вычислительные мощности компьютера или на отдельные его комплектующие части.

Процесс рендеринга так или иначе присутствует в разных сферах профессиональной деятельности, будь то киноиндустрия, индустрия видеоигр или же видеоблогинг. Зачастую, рендер является последним или предпоследним этапом в работе над проектом, после чего работа считается завершенной или же нуждается в небольшой постобработке. Также стоит отметить, что нередко рендером называют не сам процесс рендеринга, а скорее уже завершенный этап данного процесса или его итоговый результат.

слова «Рендер».

Слово Рендер (Рендеринг) — это англицизм, который зачастую переводится на русский язык словом “Визуализация ”.

Что такое Рендеринг в 3D?

Чаще всего, когда мы говорим о рендере, то имеем в виду рендеринг в 3D графике. Сразу стоит отметить, что на самом деле в 3D рендере нету трех измерений как таковых, которые мы зачастую можем увидеть в кинотеатре надев специальные очки. Приставка “3D” в название скорее говорит нам о способе создание рендера, который и использует 3-х мерные объекты, созданные в компьютерных программах для 3D моделирования. Проще говоря, в итоге мы все равно получаем 2D изображение или их последовательность (видео) которые создавались (рендерелись) на основе 3-х мерной модели или сцены.

Рендеринг — это один из самых сложных в техническом плане этапов в работе с 3D графикой. Чтоб объяснить эту операцию простым языком, можно привести аналогию с работами фотографов. Для того, чтоб фотография предстала во всей красе, фотографу нужно пройти через некоторые технические этапы, например, проявление пленки или печать на принтере. Примерно такими же техническими этапами и обременены 3d художники, которые для создания итогового изображения проходят этап настройки рендера и сам процесс рендеринга.

Построение изображения.

Как уже говорилось ранее, рендеринг — это один из самых сложных технических этапов, ведь во время рендеринга идут сложные математические вычисления, выполняемые движком рендера. На этом этапе, движок переводит математические данные о сцене в финальное 2D-изображение. Во время процесса идет преобразование 3d-геометрии, текстур и световых данных сцены в объединенную информацию о цветовом значение каждого пикселя в 2D изображение. Другими словами, движок на основе имеющихся у него данных, просчитывает то, каким цветом должен быть окрашено каждый пиксель изображения для получения комплексной, красивой и законченной картинки.

Основные типы рендеринга:

В глобальном плане, есть два основных типа рендеринга, главными отличиями которых является скорость, с которой просчитывается и финализируется изображение, а также качество картинки.

Что такое Рендеринг в реальном времени?

Рендеринг в реальном времени зачастую широко используется в игровой и интерактивной графике, где изображение должно просчитываться с максимально большой скоростью и выводиться в завершенном виде на дисплей монитора моментально.

Поскольку ключевым фактором в таком типе рендеринга есть интерактивность со стороны пользователя, то изображение приходится просчитывать без задержек и практически в реальном времени, так как невозможно точно предсказать поведение игрока и то, как он будет взаимодействовать с игровой или с интерактивной сценой. Для того, чтоб интерактивная сцена или игра работала плавно без рывков и медлительности, 3D движку приходится рендерить изображение со скоростью не менее 20-25 кадров в секунду. Если скорость рендера будет ниже 20 кадров, то пользователь будет чувствовать дискомфорт от сцены наблюдая рывки и замедленные движения.

Большую роль в создание плавного рендера в играх и интерактивных сценах играет процесс оптимизации. Для того, чтоб добиться желаемой скорости рендера, разработчики применяют разные уловки для снижения нагрузки на рендер движок, пытаясь снизить вынужденное количество просчетов. Сюда входит снижение качества 3д моделей и текстур, а также запись некоторой световой и рельефной информации в заранее запеченные текстурные карты. Также стоит отметить, что основная часть нагрузки при просчете рендера в реальном времени ложиться на специализированное графическое оборудование (видеокарту -GPU), что позволяет снизить нагрузку с центрального процессора (ЦП) и освободить его вычислительные мощности для других задач.

Что такое Предварительный рендер?

К предварительному рендеру прибегают тогда, когда скорость не стоит в приоритете, и нужды в интерактивности нет. Данный тип рендера используется чаще всего в киноиндустрии, в работе с анимацией и сложными визуальными эффектами, а также там, где нужен фотореализм и очень высокое качество картинки.

В отличие от Рендера в реальном времени, где основная нагрузка приходилась на графические карты(GPU) В предварительном рендере нагрузка ложится на центральный процессор(ЦП) а скорость рендера зависит от количества ядер, многопоточности и производительности процессора.

Нередко бывает, что время рендера одного кадра занимает несколько часов или даже несколько дней. В данном случаи 3D художникам практически не нужно прибегать к оптимизации, и они могут использовать 3D модели высочайшего качества, а также текстурные карты с очень большим разрешением. В итоге, картинка получается значительно лучше и фото-реалистичней по сравнению с рендером в реальном времени.

Программы для рендеринга.

Сейчас, на рынке присутствует большое количество рендеринг движков, которые отличаются между собой скоростью, качеством картинки и простотой использования.

Как правило, рендер движки являются встроенными в крупные 3D программы для работы с графикой и имеют огромный потенциал. Среди наиболее популярных 3D программ (пакетов) есть такой софт как:

  • 3ds Max;
  • Maya;
  • Blender;
  • Cinema 4d и др.

Многие из этих 3D пакетов имеют уже идущие в комплекте рендер движки. К примеру, рендер-движок Mental Ray присутствует в пакете 3Ds Max. Также, практически любой популярный рендер-движок, можно подключить к большинству известных 3d пакетов. Среди популярных рендер движков есть такие как:

  • V-ray;
  • Mental ray;
  • Corona renderer и др.

Хотелось бы отметить, что хоть и процесс рендеринга имеет очень сложные математические просчеты, разработчики программ для 3D-рендеринга всячески пытаются избавить 3D-художников от работы со сложной математикой лежащей в основе рендер-программы. Они пытаются предоставить условно-простые для понимания параметрические настройки рендера, также материальные и осветительные наборы и библиотеки.

Многие рендер-движки сыскали славу в определенных сферах работы с 3д графикой. Так, например, “V-ray” имеет большую популярность у архитектурных визуализаторов, из-за наличия большого количества материалов для архитектурной визуализации и в целом, хорошего качества рендера.

Методы визуализации.

Большинство рендер движков использует три основных метода вычисления. Каждый из них имеет как свои преимущества, так и недостатки, но все три метода имеют право на своё применение в определенных ситуациях.

1. Scanline (сканлайн).

Сканлайн рендер — выбор тех, кто приоритет отдаст скорости, а не качеству. Именно за счет своей скорости, данный тип рендера зачастую используется в видеоиграх и интерактивных сценах, а также во вьюпортах различных 3D пакетов. При наличие современного видеоадаптера, данный тип рендера может выдавать стабильную и плавную картинку в реальном времени с частотой от 30 кадров в секунду и выше.

Алгоритм работы:

Вместо рендеринга «пикселя по пикселю», алгоритм функционирования «scanline» рендера заключается в том, что он определяет видимую поверхность в 3D графике, и работая по принципу «ряд за рядом», сперва сортирует нужные для рендера полигоны по высшей Y координате, что принадлежит данному полигону, после чего, каждый ряд изображения просчитывается за счет пересечения ряда с полигоном, который является ближайшим к камере. Полигоны, которые больше не являются видимыми, удаляются при переходе одного ряда к другому.

Преимущество данного алгоритма в том, что отсутствует необходимость передачи координат о каждой вершине с основной памяти в рабочую, а транслируются координаты только тех вершин, которые попадают в зону видимости и просчета.

2. Raytrace (рейтрейс).

Этот тип рендера создан для тех, кто хочет получить картинку с максимально качественной и детализированной прорисовкой. Рендеринг именно этого типа, имеет очень большую популярность у любителей фотореализма, и стоит отметить что не спроста. Довольно часто с помощью рейтрейс-рендеринга мы можем увидеть потрясающе реалистичные кадры природы и архитектуры, которые отличить от фотографии удастся не каждому, к тому же, нередко именно рейтрейс метод используют в работе над графиков в CG трейлерах или кино.

К сожалению, в угоду качеству, данный алгоритм рендеринга является очень медлительным и пока что не может использоваться в риал-тайм графике.

Алгоритм работы:

Идея Raytrace алгоритма заключается в том, что для каждого пикселя на условном экране, от камеры прослеживается один или несколько лучей до ближайшего трехмерного объекта. Затем луч света проходит определенное количество отскоков, в которые может входить отражения или преломления в зависимости от материалов сцены. Цвет каждого пикселя вычисляется алгоритмически на основе взаимодействия светового луча с объектами в его трассируемом пути.

Метод Raycasting.

Алгоритм работает на основе «бросания» лучей как будто с глаз наблюдателя, сквозь каждый пиксель экрана и нахождения ближайшего объекта, который преграждает путь такого луча. Использовав свойства объекта, его материала и освещения сцены, мы получаем нужный цвет пикселя.

Нередко бывает, что «метод трассировки лучей» (raytrace) путают с методом «бросания лучей» (raycasting). Но на самом деле, «raycasting» (метод бросания луча) фактически является упрощенным «raytrace» методом, в котором отсутствует дальнейшая обработка отбившихся или заломленных лучей, а просчитывается только первая поверхность на пути луча.

3. Radiosity.

Вместо «метода трассировки лучей», в данном методе просчет работает независимо от камеры и является объектно-ориентированным в отличие от метода «пиксель по пикселю». Основная функция “radiosity” заключается в том, чтобы более точно имитировать цвет поверхности путем учета непрямого освещения (отскок рассеянного света).

Преимуществами «radiosity» являются мягкие градуированные тени и цветовые отражения на объекте, идущие от соседних объектов с ярким окрасом.

Достаточно популярна практика использования метода Radiosity и Raytrace вместе для достижения максимально впечатляющих и фотореалистичных рендеров.

Что такое Рендеринг видео?

Иногда, выражение «рендерить» используют не только в работе с компьютерной 3D графикой, но и при работе с видеофайлами. Процесс рендеринга видео начинается тогда, когда пользователь видеоредактора закончил работу над видеофайлом, выставил все нужные ему параметры, звуковые дорожки и визуальные эффекты. По сути, все что осталось, это соединить все проделанное в один видеофайл. Этот процесс можно сравнить с работой программиста, когда он написал код, после чего все что осталось, это скомпилировать весь код в работающую программу.

Как и у 3D дизайнера, так и у пользователя видеоредактора, процесс рендеринга идет автоматически и без участия пользователя. Все что требуется, это задать некоторые параметры перед стартом.

Скорость рендеринга видео зависит от продолжительности и качества, которое требуется на выходе. В основном, большая часть просчета ложиться на мощность центрального процессора, поэтому, от его производительности и зависит скорость видео-рендеринга.

Категории: , / / от

Приветствую вас уважаемые друзья. В очередном посте мы вновь затронем тему графических процессоров, визуализации с помощью V-Ray RT и распределения вычислительных ресурсов в multi gpu системах. Как вы уже давно знаете, графические процессоры все глубже проникают в нашу деятельность и такие большие пакеты как Autodesk 3ds Max, Autodesk Maya, SideFX Houdini и другие, обращаются к ним для ускорения не только аппаратной визуализации, но и для ускорения вычислений общего назначения. Например, тесселяция геометрии с помощью OpenSubdiv или расчет динамических эффектов, а также в процессах фотореалистичной визуализации.
Немудрено, что установка нескольких графических ускорителей будет полезна в таких задачах и позволит распределить нагрузку между ними. В своих материалах я уже не раз писал о том, что использую рабочую станцию с двумя графическими ускорителями, это сделано для того, чтобы распределить вычисления между ними и одну задачу выполнять на одном GPU, а другую задачу выполнять на другом.
По умолчанию Autodesk Maya 2015 для визуализации виртуального пространства в видовых окнах, это очень хорошо, когда вы хотите отображать текстуры, использовать такие эффекты как Ambient Occlusion, освещение и тени, или аппаратное сглаживание. В таком случае, если у вас несколько графических ускорителей, Maya постарается распределить нагрузку между ними и выполнять визуализацию средствами обоих GPU.

Пример загруженности вычислениями двух GPU в процессе навигации в видовых окнах.
Но такое распределение и плотное использование графических ускорителей только для отображения виртуального пространства может снизить производительность системы в процессе одновременного запуска вычислений общего назначения, например V-Ray RT GPU. И настройка только самого V-Ray RT и определение для него графических процессоров, которые будут использованы для вычислений, не поможет решить данную проблему. Здесь может потребоваться дополнительная настройка драйвера графического процессора. Об этом я и расскажу далее в этом посте.

Пример серьезного снижения производительности системы и замедленное отображение виртуального пространства при неправильной конфигурации графических процессоров и визуализации с помощью V-Ray RT.

Конечно, первое что следует сделать, это определить, какой из нескольких GPU будет участвовать в вычислениях V-Ray RT. Это можно сделать с помощью специальной утилиты, поставляемой вместе с V-Ray for Maya. Утилита получила имя Select OpenCL devices for V-Ray RT GPU . О данной утилите я писал и рассказывал в ранних постах и видео , посвященных V-Ray RT GPU.


Утилита Select OpenCL devices for V-Ray RT GPU.
Помимо этого, вы можете вручную определить переменную среду (Environment Variable), которую, по сути, и меняет утилита Select OpenCL devices for V-Ray RT GPU.


Переменная среда VRAY_OPENCL_PLATFORMS_x64 с параметрами, определяющими, какой GPU будет использован V-Ray RT GPU.
Итак, для V-Ray RT GPU, у меня по умолчанию выбран второй графический ускоритель, не отвечающий за вывод изображения на мониторы. Обычно, им выступает NVIDIA Quadro K4000. Этот GPU достаточно производителен и обладает достаточным для моих задач объемом памяти. Как было показано на видео в начале поста, я столкнулся с серьезной проблемой, когда при одновременном вычислении V-Ray RT и навигации в виртуальном пространстве, Maya начинает неимоверно тормозить.
Но в чем плюс графических ускорителей NVIDIA Quadro, так это в достаточно стабильных и хорошо конфигурируемых драйверах. Так как Maya по своей природе отлично адаптирована под API OpenGL, а в конфигурации драйвера есть все необходимое для 3D приложений, то можно без проблем выполнить настройку под желаемое приложение.


Страница Manage 3D settings драйвера NVIDIA Quadro с открытой вкладкой Global Settings.
Первое что нам необходимо сделать – открыть NVIDIA Control Panel (Панель управления NVIDIA) и перейти в раздел Manage 3D settings (Управление параметрами 3D). На вкладке Global Settings (Глобальные параметры), выберите желаемый профиль глобальных параметров – раскрывающийся список Global presets (Глобальные предустановки). Я по умолчанию использую базовый профиль (Base profile), так как в нем используются сбалансированные настройки, которые могут быть применены для любого приложения.
Для того чтобы определить, какой из установленных в системе GPU будет использован для визуализации виртуального пространства с помощью OpenGL. Это можно сделать с помощью параметра OpenGL rendering GPU (ГП рендеринга OpenGL). Так как в моем примере используются GPU NVIDIA Quadro K2000 и NVIDIA Quadro K4000, и K2000 применяется для вывода изображения на два дисплея, а так же для визуализации виртуальных окон проекций. И как было сказано выше, для вычислений используется модель K4000. Поэтому, было решено выбрать для данного атрибута GPU NVIDIA Quadro K2000.


Страница Manage 3D settings и вкладка Program Settings.
После того, как вы выберите графический ускоритель для выполнения визуализации виртуального пространства необходимо проверить, как это отразится на индивидуальных параметрах для приложения Maya. Это можно сделать на вкладке Program Settings (Программные настройки) и выбрав в раскрывающемся списке Select a program to customize (Выберите программу для настройки) профиль Autodesk Maya Stereo .
В параметрах данного профиля проверьте, что параметру OpenGL rendering GPU (ГП рендеринга OpenGL) назначен выбранный вами графический ускоритель.
Если вы хотите максимально освободить объем памяти того GPU который будет выполнять вычисления, вы также можете изменить параметр Optimize for sparse texture performance (Оптимизировать для работы с редкими текстурами), и также назначить ему тот GPU который отвечает за визуализацию виртуального пространства.
В результате всех манипуляций с настройками драйвера, просто перезапустите Maya и можете приступать к работе. Результат описываемых выше действий можно увидеть в видео ниже.

Производительность навигации в виртуальном пространстве и визуализации V-Ray RT GPU после всех изменений.

Как видите, все достаточно просто и можно безболезненно настроить multi gpu систему для работы с различными приложениями и их функциями. Конечно, если в системе используется 3 или даже 4 графических ускорителя, это позволит еще более тонко выполнять настройку и распределение ресурсов между приложениями.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: