Интегрирование некоторых иррациональных функций. Интегрирование — MT1205: Математический анализ для экономистов — Бизнес-информатика

Калькулятор решает интегралы c описанием действий ПОДРОБНО на русском языке и бесплатно!

Решение неопределённых интегралов

Это онлайн сервис в один шаг :

Решение определённых интегралов

Это онлайн сервис в один шаг :

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний предел для интеграла
  • Ввести верхний предел для интеграла

Решение двойных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)

Решение несобственных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Введите верхнюю область интегрирования (или + бесконечность)
  • Ввести нижнюю область интегрирования (или - бесконечность)
Перейти: Онлайн сервис "Несобственный интеграл"

Решение тройных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний и верхний пределы для первой области интегрирования
  • Ввести нижний и верхний предел для второй области интегрирования
  • Ввести нижний и верхний предел для третьей области интегрирования
Перейти: Онлайн сервис "Тройной интеграл"

Данный сервис позволяет проверить свои вычисления на правильность

Возможности

  • Поддержка всех возможных математических функций: синус, косинус, экспонента, тангенс, котангенс, корень квадратный и кубический, степени, показательные и другие.
  • Есть примеры для ввода, как для неопределённых интегралов, так и для несобственных и определённых.
  • Исправляет ошибки в ведённых вами выражениях и предлагает свои варианты для ввода.
  • Численное решение для определённых и несобственных интегралов (в том числе для двойных и тройных интегралов).
  • Поддержка комплексных чисел, а также различных параметров (вы можете указывать в подинтегральном выражении не только переменную интегрирования, но и другие переменные-параметры)

Универсального способа решения иррациональных уравнений нет, так как их класс отличается количеством. В статье будут выделены характерные виды уравнений с подстановкой при помощи метода интегрирования.

Для использования метода непосредственного интегрирования необходимо вычислять неопределенные интегралы типа ∫ k x + b p d x , где p является рациональной дробью, k и b являются действительными коэффициентами.

Пример 1

Найти и вычислить первообразные функции y = 1 3 x - 1 3 .

Решение

По правилу интегрирования необходимо применить формулу ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C , а таблица первообразных говорит о том, что имеется готовое решение данной функции. Получаем, что

∫ d x 3 x - 1 3 = ∫ (3 x - 1) - 1 3 d x = 1 3 · 1 - 1 3 + 1 · (3 x - 1) - 1 3 + 1 + C = = 1 2 (3 x - 1) 2 3 + C

Ответ: ∫ d x 3 x - 1 3 = 1 2 (3 x - 1) 2 3 + C .

Имеют место быть случаи, когда можно использовать метод подведения под знак дифференциала. Это решается по принципу нахождения неопределенных интегралов вида ∫ f " (x) · (f (x)) p d x , когда значение p считается рациональной дробью.

Пример 2

Найти неопределенный интеграл ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x .

Решение

Отметим, что d x 3 + 5 x - 7 = x 3 + 5 x - 7 " d x = (3 x 2 + 5) d x . Тогда необходимо произвести подведение под знак дифференциала с использованием таблиц первообразных. Получаем, что

∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = ∫ (x 3 + 5 x - 7) - 7 6 · (3 x 2 + 5) d x = = ∫ (x 3 + 5 x - 7) - 7 6 d (x 3 + 5 x - 7) = x 3 + 5 x - 7 = z = = ∫ z - 7 6 d z = 1 - 7 6 + 1 z - 7 6 + 1 + C = - 6 z - 1 6 + C = z = x 3 + 5 x - 7 = - 6 (x 3 + 5 x - 7) 6 + C

Ответ: ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = - 6 (x 3 + 5 x - 7) 6 + C .

Решение неопределенных интегралов предусматривает формулу вида ∫ d x x 2 + p x + q , где p и q являются действительными коэффициентами. Тогда необходимо выделить полный квадрат из-под корня. Получаем, что

x 2 + p x + q = x 2 + p x + p 2 2 - p 2 2 + q = x + p 2 2 + 4 q - p 2 4

Применив формулу, расположенную в таблице неопределенных интегралов, получаем:

∫ d x x 2 ± α = ln x + x 2 ± α + C

Тогда вычисление интеграла производится:

∫ d x x 2 + p x + q = ∫ d x x + p 2 2 + 4 q - p 2 4 = = ln x + p 2 + x + p 2 2 + 4 q - p 2 4 + C = = ln x + p 2 + x 2 + p x + q + C

Пример 3

Найти неопределенный интеграл вида ∫ d x 2 x 2 + 3 x - 1 .

Решение

Для вычисления необходимо вынести число 2 и расположить его перед радикалом:

∫ d x 2 x 2 + 3 x - 1 = ∫ d x 2 x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x 2 + 3 2 x - 1 2

Произвести выделение полного квадрата в подкоренном выражении. Получим, что

x 2 + 3 2 x - 1 2 = x 2 + 3 2 x + 3 4 2 - 3 4 2 - 1 2 = x + 3 4 2 - 17 16

Тогда получаем неопределенный интеграл вида 1 2 ∫ d x x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x + 3 4 2 - 17 16 = = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Ответ: d x x 2 + 3 x - 1 = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Интегрирование иррациональных функций производится аналогичным способом. Применимо для функций вида y = 1 - x 2 + p x + q .

Пример 4

Найти неопределенный интеграл ∫ d x - x 2 + 4 x + 5 .

Решение

Для начала необходимо вывести квадрат знаменателя выражения из-под корня.

∫ d x - x 2 + 4 x + 5 = ∫ d x - x 2 - 4 x - 5 = = ∫ d x - x 2 - 4 x + 4 - 4 - 5 = ∫ d x - x - 2 2 - 9 = ∫ d x - (x - 2) 2 + 9

Табличный интеграл имеет вид ∫ d x a 2 - x 2 = a r c sin x a + C , тогда получаем, что ∫ d x - x 2 + 4 x + 5 = ∫ d x - (x - 2) 2 + 9 = a r c sin x - 2 3 + C

Ответ: ∫ d x - x 2 + 4 x + 5 = a r c sin x - 2 3 + C .

Процесс нахождения первообразных иррациональных функций вида y = M x + N x 2 + p x + q , где имеющиеся M , N , p , q являются действительными коэффициентами, причем имеют схожесть с интегрированием простейших дробей третьего типа. Это преобразование имеет несколько этапов:

подведение дифференциала под корень, выделение полного квадрата выражения под корнем, применение табличных формул.

Пример 5

Найти первообразные функции y = x + 2 x 2 - 3 x + 1 .

Решение

Из условия имеем, что d (x 2 - 3 x + 1) = (2 x - 3) d x и x + 2 = 1 2 (2 x - 3) + 7 2 , тогда (x + 2) d x = 1 2 (2 x - 3) + 7 2 d x = 1 2 d (x 2 - 3 x + 1) + 7 2 d x .

Рассчитаем интеграл: ∫ x + 2 x 2 - 3 x + 1 d x = 1 2 ∫ d (x 2 - 3 x + 1) x 2 - 3 x + 1 + 7 2 ∫ d x x 2 - 3 x + 1 = = 1 2 ∫ (x 2 - 3 x + 1) - 1 2 d (x 2 - 3 x + 1) + 7 2 ∫ d x x - 3 2 2 - 5 4 = = 1 2 · 1 - 1 2 + 1 · x 2 - 3 x + 1 - 1 2 + 1 + 7 2 ln x - 3 2 + x - 3 2 - 5 4 + C = = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C

Ответ: ∫ x + 2 x 2 - 3 x + 1 d x = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C .

Поиск неопределенных интегралов функции ∫ x m (a + b x n) p d x осуществляется при помощи метода подстановки.

Для решения необходимо ввести новые переменные:

  1. Когда число p является целым, тогда считают, что x = z N , а N является общим знаменателем для m , n .
  2. Когда m + 1 n является целым числом, тогда a + b x n = z N , а N является знаменателем числа p .
  3. Когда m + 1 n + p является целым числом, то необходим ввод переменной a x - n + b = z N , а N является знаменателем числа p .
Пример 6

Найти определенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Получаем, что ∫ 1 x 2 x - 9 d x = ∫ x - 1 · (- 9 + 2 x 1) - 1 2 d x . Отсюда следует, что m = - 1 , n = 1 , p = - 1 2 , тогда m + 1 n = - 1 + 1 1 = 0 является целым числом. Можно ввести новую переменную вида - 9 + 2 x = z 2 . Необходимо выразить x через z . На выходы получим, что

9 + 2 x = z 2 ⇒ x = z 2 + 9 2 ⇒ d x = z 2 + 9 2 " d z = z d z - 9 + 2 x = z

Необходимо произвести подстановку в заданный интеграл. Имеем, что

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9 = = 2 3 a r c t g z 3 + C = 2 3 a r c c t g 2 x - 9 3 + C

Ответ: ∫ d x x 2 x - 9 = 2 3 a r c c t g 2 x - 9 3 + C .

Для упрощения решения иррациональных уравнений применяются основные методы интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Этом параграфе будет рассмотрен метод интегрирования рациональных функций. 7.1. Краткие сведения о рациональных функциях Простейшей рациональной функцией является многочлен ti-ой степени, т.е. функция вида где - действительные постоянные, причем а0 Ф 0. Многочлен Qn(x), у которого коэффициент а0 = 1» называется приведенным. Действительное число b называется корнем многочлена Qn(z), если Q„(b) = 0. Известно, что каждый многочлен Qn(x) с действительными коэффициентами единственным образом разлагается на действительные множители вида где р, q - действительные коэффициенты, причем квадратичные множители не имеют действительных корней и, следовательно, неразложимы на действительные линейные множители. Объединяя одинаковые множители (если таковые имеются) и полагая, для простоты, многочлен Qn(x) приведенным, можнозаписатьегоразложение на множители в виде где - натуральные числа. Так как степень многочлена Qn(x) равна п, то сумма всех показателей а, /3,..., А, сложенная с удвоенной суммой всех показателей щ,..., ц, равна п: Корень а многочлена называется простым или однократным, если а = 1, и кратным, если а > 1; число а называется кратностью корня а. То же самое относится и к другим корням многочлена. Рациональной функцией f(x) или рациональной дробью называется отношение двух многочленов причем предполагается, что многочлены Рт{х) и Qn{x) не имеют общих множителей. Рациональная дробь называется правильной, если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе, т. е. . Если же m п, то рациональная дробь называется неправильной и в этом случае, разделив числитель на знаменатель по правилу деления многочленов, ее можно представить в виде где - некоторые многочлены, а ^^ является правильной рациональной дробью. Пример 1. Рациональная дробь является неправильной дробью. Разделив «уголком», будем иметь Следовательно. Здесь. причем правильная дробь. Определение. Простейшими (или элементарными) дробями называются рациональные дроби следующих четырех типов: где - действительные числа, к - натуральное число, большее или равное 2, а квадратный трехчлен х2 + рх + q не имеет действительных корней, так что -2 _2 его дискриминант В алгебре доказывается следующая теорема. Теорема 3. Правильная рациональная дробь с действительными коэффициентами, знаменатель которой Qn(x) имеет вид разлагается единственным способом на сумму простейших дробей по правилу Интегрирование рациональных функций Краткие сведения о рациональных функциях Интегрирование простейших дробей Общий случай Интегрирование иррациональных функций Первая подстановка Эйлера Вторая подстановка Эйлера Третья подстановка Эйлера В этом разложении - некоторые действительные постоянные, часть которых может быть равна нулю. Для нахождения этих постоянных правую.часть равенства (I) приводят к общему знаменателю, а затем приравнивают коэффициенты при одинаковых степенях х в числителях левой и правой частей. Это дает систему линейных уравнений, из которой находятся искомые постоянные. . Этот метод нахождения неизвестных постоянных называется методом неопределенных коэффициентов. Иногда бывает удобнее применить другой способ нахождения неизвестных постоянных, который состоит в том, что после приравнивания числителей получается тождество относительно х, в котором аргументу х придают некоторые значения, например, значения корней, в результате чего получаются уравнения для нахождения постоянных. Особенно он удобен, если знаменатель Q„(x) имеет только действительные простые корни. Пример 2. Разложи ь на простейшие дроби рациональную дробь Данная дробь правильная. Разлагаем знаменатель на множи ели: Так как корни знаменателя действительные и различные, то на основании формулы (1) разложение дроби на простейшие будет иметь вид Привода правую честь «того равенства к общему знаменателю и приравнивая числители а его левой и правой частях, получим тождество или Неизвестные коэффициенту А. 2?, С найдем двумя способами. Первый споооб. Приравнивая коэффициенты при одинаковых степенях х, т.в. при (свободный член), а левой и правой частях тождестве, получим линейную систему уравнений для нахождения неизвестных коэффициентов А, В, С: Это система имеет единственное решение С Второй способ. Тек как корни знаменателя рваны ствв в я 0, получим 2 = 2А, откуда А * 1; г я 1, получим -1 * -В, откуда 5*1; х я 2, получим 2 = 2С. откуда С» 1, и искомое разложение имеет вид 3. Рехложнтъ не простейшие дроби рациональную дробь 4 Разлагаем многочлен, стоящий а энаиеивтвле, на множители: . Знаменатель имеет две различных двйствитв ьных корня: х\ = 0 кратности кратности 3. Поэтому разложение данной дроби не простейшие имеет вид Приведя правую часть к общему знаменателю, найдем или Первый способ. Приравнивая коэффициенты при одинаковых степенях х в левой и правой частях последнего тождаства. получим линейную систему уравнений Эта система имеет единственное решение и искомым разложением будет Второй способ. В полученном тождестве полагая х = 0, получаем 1 а А2, или А2 = 1; поле* гея х = -1, получим -3 я В}, или Bj я -3. При подстановке найденных значений коэффициентов А\ и В) а тождество оно примет вид или Полагая х = 0, а затем х = -I. найдем, что = 0, В2 = 0 и. значит, В\ = 0. Таким образом, опять получаем Пример 4. Разложить на простейшие дроби рациональную дробь 4 Знаменатель дроби не имеет действительных корней, так как функция х2 + 1 не обращается е. нуль ни при каких действительных значениях х. Поэтому разложение на простейшие дроби должно иметь вид Отсюда получаем или. Приравнивая коэффициенты при сшинаковых степенях х в левой и правой частях последнего равенства, будем иметь откуда находим и, следовательно, Следует отметить, что в некоторых случаях разложения на простейшие дроби можно получить быстрее и проще, действуя каким-либо другим путем, не пользуясь методом неопределенных коэффициентов. Например, для получения разложения дроби в примере 3, можно прибавить и вычесть в числителе Зх2 и произвести деление, так как уквзано ниже. 7.2. Интегрирование простейших дробей, Как было сказано выше, любую неправильную рациональную дробь можно представить в виде суммы некоторого многочлена и правильной рациональной дроби (§7), причем это представление единственно. Интегрирование многочлена не представляет трудностей, поэтому рассмотрим вопрос об интегрировании правильной рациональной дроби. Так как любая правильная рациональная дробь представима в виде суммы простейших дробей, то ее интегрирование сводится к интегрированию простейших дробей. Рассмотрим теперь вопрос об их интегрировании. III. Для нахождения интеграла от простейшей дроби третьего типа выделим у квадратного трехчлена полный квадрат двучлена: Так как второе слагаемое то положим его равным а2, где а затем сделаем подстанов. Тогда, учитывая линейные свойства интеграла, найдем: Пример 5. Найти интеграл 4 Подынтегральная функция является простейшей дробью третьего типа, так как квадратный трехчлен х1 + Ах + 6 не имеет действительных корней (его дискриминант отрицателен: , а в числителе стоит многочлен первой степени. Поэтому поступаем следующим образом: 1) выделяем полный квадрат в знаменателе 2) делаем подстановку (здесь 3) на*одим интегрвл Для нахождения интеграла от простейшей дроби четвертого типа положим, как и выше, . Тогда получим Интеграл в правой части обозначим через Л и преобразуем его следующим образом: Интеграл в правой части интегрируем по частям, полагая откуда или Интегрирование рациональных функций Краткие сведения о рациональных функциях Интегрирование простейших дробей Общий случай Интегрирование иррациональных функций Первая подстановка Эйлера Вторая подстановка Эйлера Третья подстановка Эйлера Мы получили так называемую рекуррентную формулу, которая позволяет найти интеграл Jk для любого к = 2, 3,... . Действительно, интеграл J\ является табличным: Полагая в рекуррентной формуле, найдем Зная и полагая Л = 3, легко найдем Jj и так далее. В окончательном результате, подставляя всюду вместо t и а их выражения через х и коэффициенты р и q, получим для первоначального интеграла выражение егочерез х и заданные числа М, ЛГ, р, q. Пример 8. Нейти интеграл « Подынтеграленая функция есть простейшая дробь четвертого типа, так как дискриминант квадратного трехчлена отрицателен, т.е. в значит, знаменатель действительных корней не имеет, и числитель есть многочлен 1-ой степени. 1) Выделяем а знаменателе полный квадрат 2) Делаем подстановку: Интеграл примет вид: Полагая в рекуррентной формуле * = 2, а3 = 1. будем иметь, и, следовательно, искомый интеграл рввен Возвращаясь к переменной х, получим окончательно 7.3. Общий случай Из результатов пп. 1 и 2 этого параграфа непосредственно следует важная теорема. Теорем! 4. Неопредьченный интеграл от любой рациональной функции всегда существует (на интервалах, в которых знаменатель дроби Q„(х) ф 0) и выражается через конечное число элементарных функций, а именно, он является алгебраической сум.чой, членами которой могут быть лишь мнконаены, рациональные дроби, натуральные логарифмы и арктангенсы. Итак, для нахождения неопределенного интеграла от дробно-рациональной функции следует поступать следу юишм образом: 1) если рациональная дробь неправильная, то делением числителя на знаменатель выделяется целая часть, т. е. данная функция представляется в виде суммы многочлена и правильной рациональной дроби; 2) затем знаменатель полученной правильной дроби разлагается на произведение линейных и квадратичных множителей; 3) эта правильная дробь разлагается на сумму простейших дробей; 4) используя линейность интеграла и формулы п. 2, находятся интегралы от каждого слагаемого в отдельности. Пример 7. Найти интеграл М Так как знаменатель есть многочлен третьей стелени, то подынтегральная функция является неправильной дробью. Выделяем в ней целую часть: Следовательно, будем иметь. Знаменатель правильной дроби имеет фи различных действительных корня: и поэтому ее разложение на простейшие дроби имеет вид Отсюда находим. Придавая аргументу х значения, равные корням знаменателя, найдем из этого тождества, что: Следовательно, Искомый интеграл будет равен Пример 8. Найти интеграл 4 Подынтегральная функция является правильной дробью, знаменатель которой имеет два различных действительных корня: х - О кратности 1 и х = 1 кратности 3, Поэтому разложение подынтегральной функции на простейшие дроби имеет вид Приводя правую часть этого равенства к общему знаменателю и сокращая обе части равенства на этст знаменатель, получим или. Приравниваем коэффициенты при одинаковых степенях х в левой и правой частях этого тождества: Отсюда находим. Подставляя найденные значения коэффициентов в разложение, будем иметь Интегрируя, находим: Пример 9. Найти интеграл 4 Знаменатель дроби не имеет действительных корней. Поэтому разложение на простейшие дроби подынтегральной функции имеет вид Отсюда или Приравнивая коэффициенты при одинаковых степенях х в левой и правой частях этого тождества, будем иметь откуда находим и, следовательно, Замечание. В приведенном примере подынтегральную функцию можно представить в виде суммы простейших дробей более простым способом, а именно, в числителе дроби выделяем бином, стоящий в знаменатгле, а затем производим почленное деление: §8. Интегрирование иррациональных функций Функция вида где Рт и £?„ яачяются многочленами степеней тип соответственно от переменных иь«2,... называется рацыональкой функцией от ubu2j... Например, многочлен второй степени от двух переменных и\ и и2 имеет вид где - некоторые действительные постоянные, причем Пример 1, Функция является рациональной функцией от переменных г и у, так как она представляет ообой отношение многочлена третьей степени и многочлене пятой степени а фунщия тисовой не является. В том случае, когда переменные, в свою очередь, являются функциями переменной ж: то функция ] называется рациональной функцией от функций Примера. Фуниция есть рациональная функция от г и рвдиквлв Пряивр 3. Функция вида не является рациональной функцией от х и радикале у/г1 + 1, но она является рациональной функцией от функций Как показывают примеры, интегралы от иррациональных функций не всегда выражаются через элементарные функции. Например, часто встречающиеся в приложениях интегралы не выражаются через элементарные функции; эти интегралы называются эллиптическими интегралами первого и второго родов соответственно. Рассмотрим те случаи, когда интегрирование иррациональных функций можно свести с помощью некоторых подстановок к интегрированию рациональных функций. 1. Пусть требуется найти интеграл где R(x, у) - рациональная функция своих аргументов х и у; m £ 2 - натуральное число; а, 6, с, d - действительные постоянные, удовлетворяющие условию ad- Ьс ^ О (при ad - be = 0 коэффициенты а и Ь пропорциональны коэффициентам с и d, и по-этомуотношение не зависитот ж; значит, в этом случае подынтегральная функция будет являться рациональной функцией переменной х, интегрирование которой было рассмотрено ранее). Сделаем в данном интеграле замену переменной, положив Отсюда выражаем переменную х через новую переменную Имеем х = - рациональная функция от t. Далее находим или, после упрощения, Поэтому где Л1 (t) - рациональная функция от *, так какрациональнаяфунадия от рациональной функции, а также произведение рациональных функций, представляют собой рациональные функции. Интегрировать рациональные функции мы умеем. Пусть Тогда искомый интеграл будет равен При. ИвЙти интеграл 4 Подынтегральна* функция есть рациональная функция от. Поэтому полагаем t = Тогда Интегрирование рациональных функций Краткие сведения о рациональных функциях Интегрирование простейших дробей Общий случай Интегрирование иррациональных функций Первая подстановка Эйлера Вторая подстановка Эйлера Третья подстановка Эйлера Таким образом, получим Примар 5. Найти интеграл Общий знаменатель дробных показателей степеней х равен 12, поэтому подынтегральную функцию можно представить в виде 1 _ 1_ откуда видно, что она является рациональной функцией от: Учитывая это, положим. Следовательно, 2. Рассмотрим интефпы вида где подынтефальная функция такова, что заменив в ней радикал \/ах2 + Ъх + с через у, получим функцию R{x} у) - рациональную относительно обоих аргументов х и у. Этот интеграл сводится к интегралу от рациональной функции другой переменной подстановками Эйлера. 8.1. Первая подстановка Эйлера Пусть коэффициент а > 0. Положим или Отсюда находим х как рациональную функцию от и, значит, Таким образом, указанная подстановка выражает рационально через *. Поэтому будем иметь где Замечание. Первую подстановку Эйлера можно брать и в виде Пример 6. Найти интеграл найдем Поэтому будем иметь dx подстановку Эйлера, показать, что У 8.2. Вторая подстановка Эйлера Пусть трехчлен ах2 + Ьх + с имеет различные действительные корни Я] и х2 (коэффициента может иметь любой знак). В этом случае полагаем Так как то получаем Так как x,dxn у/ах2 + be + с выражаются рационально через t, то исходный интеграл сводится к интегралу от рациональной функции, т. е. где Задача. Применяя первую подстановку Эйлера, показать, что - рациональная функция от t. Пример 7. Нейти интеграл dx М функция ] - х1 имеет различные действительные корни. Поэтому применяем вторую подстановку Эйлере Отсюда находим Подставляя найденные вырежения в Данный?в*гйвл; получим 8.3. ТретьяподстацомлЭйлера Пусть коэффициент с > 0. Делаем замену переменной, положив. Заметим, что для приведения интеграла к интегралу от рациональной функции достаточно первой и второй подстановок Эйлера. В самом деле, если дискриминант б2 -4ас > 0, то корни квадратного трехчлена ах +Ъх + с действител ьны, и в этом случае применима вторая подстановка Эйлера. Если, то знак трехчлена ах2 + Ьх + с совпадает со знаком коэффициента а, и так как трехчлен должен быть положительным, то а > 0. В этом случае применима первая подстановка Эйлера. Для нахождения интегралов указан ного выше вида не всегда целесообразно применять подстановки Эйлера, так какдля них можно найти и другие способы интегрирования, приводящие к цели быстрее. Рассмотрим некоторые из таких интегралов. 1. Для нахождения интегралов вида выделяют прлный квадрат из квадрата ого трехчлена: где После этого делают подстановку и получают где коэффициенты а и Р имеют разные знаки или они оба положительны. При, а также при а > 0 и интеграл сведется к логарифму, если же - к арксинусу. При. Найти имтегрел 4 Таккак то. полагая, получаем Прммар 9. Найти. Полагал x -, будем иметь 2. Интеграл вида приводится к интеграл у из п. 1 следующим образом. Учитывая, что производная ()" = 2, выделяем ее в числителе: 4 Выявляем в числителе производную подкоренного выражения. Так как (х, то будем иметь, учитывая результат примера 9, 3. Интегралы вида где Р„(х) - многочлен п-ой степени, можно находить методом неопределенных коэффициентов, который состоит в следующем. Допустим, что имеет место равенство Пример 10. Майти интеграл где Qn-i(s) -многочлен (n - 1)-ой степени с неопределенными коэффициентами: Для нахождения неизвестных коэффициентов | продифференцируем обе части (1): Затем правую часть равенства (2) приводим к общему знаменателю, равному знаменателю левой части, т.е. у/ах2 + Ьх + с, сокращая на который обе части (2), получим тождество в обеих частях которого стоят многочлены степени п. Приравнивая коэффициенты при одинаковых степенях х в левой и правой частях (3), получим n + 1 уравнений, из которых находим искомые коэффициенты j4*(fc = 0,1,2,..., п). Подставляя их значения в правую часть (1) и найдя интеграл + с получим ответ для данного интеграла. Пример 11. Найти интеграл Положим Дифференцируя обе масти равенства, будем иметь Приводя правую часть к общему знаменателе и сокращая на него обе части, получим тождество или. Приравнивая коэффициенты при одинаковых степенях х, придем к системе уравнений из которой находим = Затем находим интеграл, стоящий в правой части равенства (4): Следовательно, искомый интеграл будет равен

Иррациональная функция от переменной - это функция, которая образована из переменной и произвольных постоянных с помощью конечного числа операций сложения, вычитания, умножения (возведения в целочисленную степень), деления и извлечения корней. Иррациональная функция отличается от рациональной тем, что иррациональная функция содержит операции извлечения корней.

Существует три основных типа иррациональных функций, неопределенные интегралы от которых приводятся к интегралам от рациональных функций. Это интегралы, содержащие корни произвольных целочисленных степеней из дробно-линейной функции (корни могут быть различных степеней, но от одной и той же, дробно-линейной функции); интегралы от дифференциального бинома и интегралы с квадратным корнем из квадратного трехчлена.

Важное замечание. Корни многозначны!

При вычислении интегралов, содержащих корни, часто встречаются выражения вида , где - некоторая функция от переменной интегрирования . При этом следует иметь в виду, что . То есть, при t > 0 , |t| = t . При t < 0 , |t| = - t . Поэтому, при вычислении подобных интегралов, нужно отдельно рассматривать случаи t > 0 и t < 0 . Это можно сделать, если писать знаки или там, где это необходимо. Подразумевая, что верхний знак относится к случаю t > 0 , а нижний - к случаю t < 0 . При дальнейшем преобразовании, эти знаки, как правило, взаимно сокращаются.

Возможен и второй подход, при котором подынтегральную функцию и результат интегрирования можно рассматривать как комплексные функции от комплексных переменных. Тогда можно не следить за знаками в подкоренных выражениях. Этот подход применим, если подынтегральная функция является аналитической, то есть дифференцируемой функцией от комплексной переменной. В этом случае и подынтегральная функция и интеграл от нее являются многозначными функциями. Поэтому после интегрирования, при подстановке численных значений, нужно выделить однозначную ветвь (риманову поверхность) подынтегральной функции, и для нее выбрать соответствующую ветвь результата интегрирования.

Дробно-линейная иррациональность

Это интегралы с корнями от одной и той же дробно-линейной функции:
,
где R - рациональная функция, - рациональные числа, m 1 , n 1 , ..., m s , n s - целые числа, α, β, γ, δ - действительные числа.
Такие интегралы сводится к интегралу от рациональной функции подстановкой:
, где n - общий знаменатель чисел r 1 , ..., r s .

Корни могут быть не обязательно от дробно-линейной функции, но и от линейной (γ = 0 , δ = 1 ), или от переменной интегрирования x (α = 1 , β = 0 , γ = 0 , δ = 1 ).

Вот примеры таких интегралов:
, .

Интегралы от дифференциальных биномов

Интегралы от дифференциальных биномов имеют вид:
,
где m, n, p - рациональные числа, a, b - действительные числа.
Такие интегралы сводятся к интегралам от рациональных функций в трех случаях.

1) Если p - целое. Подстановка x = t N , где N - общий знаменатель дробей m и n .
2) Если - целое. Подстановка a x n + b = t M , где M - знаменатель числа p .
3) Если - целое. Подстановка a + b x - n = t M , где M - знаменатель числа p .

В остальных случаях, такие интегралы не выражаются через элементарные функции.

Иногда такие интегралы можно упростить с помощью формул приведения:
;
.

Интегралы, содержащие квадратный корень из квадратного трехчлена

Такие интегралы имеют вид:
,
где R - рациональная функция. Для каждого такого интеграла имеется несколько методов решения.
1) С помощью преобразований привести к более простым интегралам.
2) Применить тригонометрические или гиперболические подстановки.
3) Применить подстановки Эйлера.

Рассмотрим эти методы более подробно.

1) Преобразование подынтегральной функции

Применяя формулу , и выполняя алгебраические преобразования, приводим подынтегральную функцию к виду:
,
где φ(x), ω(x) - рациональные функции.

I тип

Интеграл вида:
,
где P n (x) - многочлен степени n .

Такие интегралы находятся методом неопределенных коэффициентов, используя тождество:

.
Дифференцируя это уравнение и приравнивая левую и правую части, находим коэффициенты A i .

II тип

Интеграл вида:
,
где P m (x) - многочлен степени m .

Подстановкой t = (x - α) -1 этот интеграл приводится к предыдущему типу. Если m ≥ n , то у дроби следует выделить целую часть.

III тип

Здесь мы делаем подстановку:
.
После чего интеграл примет вид:
.
Далее, постоянные α, β нужно выбрать такими, чтобы в знаменателе коэффициенты при t обратились в нуль:
B = 0, B 1 = 0 .
Тогда интеграл распадается на сумму интегралов двух видов:
,
,
которые интегрируются подстановками:
u 2 = A 1 t 2 + C 1 ,
v 2 = A 1 + C 1 t -2 .

2) Тригонометрические и гиперболические подстановки

Для интегралов вида , a > 0 ,
имеем три основные подстановки:
;
;
;

Для интегралов , a > 0 ,
имеем следующие подстановки:
;
;
;

И, наконец, для интегралов , a > 0 ,
подстановки следующие:
;
;
;

3) Подстановки Эйлера

Также интегралы могут быть сведены к интегралам от рациональных функций одной из трех подстановок Эйлера:
, при a > 0 ;
, при c > 0 ;
, где x 1 - корень уравнения a x 2 + b x + c = 0 . Если это уравнение имеет действительные корни.

Эллиптические интегралы

В заключении рассмотрим интегралы вида:
,
где R - рациональная функция, . Такие интегралы называются эллиптическими. В общем виде они не выражаются через элементарные функции. Однако встречаются случаи, когда между коэффициентами A, B, C, D, E существуют соотношения, при которых такие интегралы выражаются через элементарные функции.

Ниже приводится пример, связанный с возвратными многочленами. Вычисление подобных интегралов выполняется с помощью подстановок:
.

Пример

Вычислить интеграл:
.

Решение

Делаем подстановку .

.
Здесь при x > 0 (u > 0 ) берем верхний знак ′+ ′. При x < 0 (u < 0 ) - нижний ′- ′.


.

Ответ

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: