Механизм приоритетов. Вложенные прерывания

Прерывания в микроконтроллерах представляет собоймеханизм, который позволяет микроконтроллеру реагировать на внешние события. Этот механизм работает таким образом, что при наступлении некоторого события в процессоре возникает сигнал, заставляющий процессор прервать выполнение текущей программы, т.е. говорят, что возникло прерывание. После того как выполнение текущей программы прервано, процессор должен перейти к выполнению программной процедуры, связанной с этим событием (прерыванием) – процедуры обработки прерывания. Однако, прежде чем перейти непосредственно к процедуре обработки прерывания, процессор должен выполнить ряд предварительных действий. Прежде всего, для того чтобы в будущем он смог корректно продолжить прерванную программу, необходимо сохранить состояние процессора (счетик команд, слово состояния процессора, внутренние регистры и т.д.) на момент, предшествующий прерыванию. Т.е. другими словами, требуется сохранить состояния всех тех ресурсов,которые так или иначе могут быть изменены в процессе обработки прерывания. Далее, если в системе имеется несколько возможных источников прерываний (а обычно так и бывает), процессор должен определить источник запроса прерываний. И, наконец, затем перейти к самой процедуре прерываний, конкретной для данного прерывания. По завершению обработки прерывания процессор должен восстановить состояние ресурсов, соответствующее прерванной программе, после чего она может быть продолжена. Следует отметить, что для сохранения всех требуемых ресурсов, поиска источника прерывания и перехода к процедуре обработки прерывания процессор должен затратить вполне определенное время. Это время называется скрытым временем прерывания. Чем меньше скрытое время прерывания, тем выше скорость реакции системы на внешние события и тем выше производительность системы. Во многом это определяется системой прерывания процессора и она является одной из основных особенностей архитектуры контроллера.

Под системой прерываний мы будем понимать совокупность аппаратных и программных средств, реализующих механизм прерываний в микроконтроллере. Хотя существуют большое множество различных вариантов построения систем прерываний, тем не менее, можно выделить несколько основных способов организации систем прерываний. Они отличаются между собой объемом аппаратных средств, необходимых для реализации такой системы и соответственно имеют различное быстродействие. Рассмотрим эти варианты.

Одноуровневые прерывания

Данная система прерываний реализована таким образом, что при возникновении прерывания процессор аппаратно переходит к подпрограмме обработки прерываний, расположенной по некоторому фиксированному адресу. Чтобы упростить аппаратную часть системы прерываний, этот адрес обычно располагается либо в начале, либо в конце адресного пространства программной памяти. Поскольку для обработки ВСЕХ прерываний используется только ОДНА точка входа, то такая система прерываний получила название одноуровневой. В такой системе выявление источника прерываний путем опроса состояния флажков признаков прерываний в начале программы обработки прерываний. При обнаружении установленного флажка происходит переход к соответствующему участку процедуры. Чем больше возможных источников прерываний, тем больше времени необходимо для обнаружения источника прерывания. Такой метод обнаружения источника прерывания называется программным опросомили поллингом (polling ). Его недостатком является довольно большое время, затрачиваемое на поиск источника прерывания и, как следствие, замедленная реакция системы на внешние события. Его достоинство – простота реализации системы прерываний.


Векторные прерывания

Чтобы значительно уменьшить время реакции на внешние события, используются многоуровневые или, что то же самое, векторные прерывания. В векторных прерываниях КАЖДОМУ источнику прерывания соответствует СВОЙ, вполне определенный, адрес процедуры обработки прерывания, который принято называть вектором прерывания.

Вообще, в качестве вектора прерывания могут быть использованы любые данные (адрес подпрограммы, адрес перехода, значение смещения относительно начала таблицы прерываний, специальные инструкции и т.д.), которые позволяют непосредственно перейти к процедуре обработки прерывания, не затрачивая времени на поиск источника прерывания. Какие данные используются в качестве вектора прерывания и каким именно образом они используются зависит от способа реализации системы прерываний в соответствующем процессоре.

PIC vs . AVR vs. MSP vs mcs51. В контроллерах PIC 16 реализована одноуровневая система прерывания. При возникновении прерывания, процессор переходит по адресу 0x0004 (точка входа по прерыванию). Далее, после контекстного сохранения регистров, выполняется программный опрос признаков прерываний (поллинг ). Нужно также отметить, что при обнаружении источника прерывания требуется сбросить соответствующий установленный флажок запроса на прерывания.

В семействе PIC 18 используется как одноуровневая (в режиме совместимости с PIC 16), так и двухуровневая система прерываний. В режиме совместимости при возникновении прерывания процессор переходит к процедуре обработки прерывания по адресу 0x 000008 и далее все происходит аналогично PIC 16. При двухуровневой системе прерывания имеются два вектора перехода 0x 000008 и 0x 000018. Присвоение уровня каждому из имеющихся источников прерывания задается программным путем, с помощью соответствующих признаков. Способ организации системы прерывания (одно- или двухуровневая ) также определяется значением соответствующего разряда в регистре управления прерываниями.

В контроллерах семейства AVR реализована векторная система прерываний. При обнаружении прерывания, процессор сразу переходит по вектору прерывания к процедуре обработки прерываний от данного источника. Вектора прерываний расположены в начальных адресах программной памяти и представляют из себя команду перехода на обработчик прерывания. Количество векторов прерываний соответствует числу возможных источников прерываний, которые зависят от конкретного типа контроллера. Следует добавить, что сброс флажков запроса на прерывания происходит автоматически при переходе по вектору прерывания и выполнение каких-либо инструкций для этого не требуется.

В контроллерах семейства MSP 430 система прерываний также является векторной, т.е. каждому периферийному модулю соответствует свой вектор прерывания. Однако, это не исключает необходимости программного контроля (поллинга ), т.к. некоторые периферийные модули имеют множественные источники прерываний. Пример – прерывания от порта ввода/вывода. В данном случае имеется возможность программно разрешать прерывания от индивидуальных выводов порта. Даже в том случае, если разрешеныпрерывания от более, чем одного входа, они все будут иметь одинаковый вектор прерываний. Определить какой конкретно вход являлся источником прерывания можно только программно. Эта особенность также влияет и на сброс флагов прерываний – флаги прерывания с множественными источниками не сбрасываются автоматически в отличие от флагов прерывания с одним источником. Адрес и количество векторов прерывания зависят от конкретного типа контроллера. Вектора прерываний находятся в конце программной памяти (адресного пространства) и представляют из себя адрес обработчика прерывания.

В контроллерах семейства mcs 51 система прерываний также является векторной, но для вектора прерывания зарезервирован довольно большой обьем памяти (8 байт), что иногда бывает достаточно для его обработчика. Флаги прерывания сбрасываются автоматически при переходе к обработчику прерываний, если у прерывания возможен только один источник и несбрасываются если у прерывания может быть два и более источников. В последнем случае необходимо программно сбросить флаг вызвавший прерывание после выяснения причины прерывания (поллинга ). Вектора располагаются в начальных адресах программной памяти.

Приоритетные прерывания

Обычно, значимость тех или иных событий в системе неодинакова. Одни события более важны и требуют немедленной реакции, другие менее важны, и с ответом на них можно подождать. Естественно, что и соответствующие этим событиям прерывания должны иметь разный приоритет. При одновременном возникновении нескольких прерываний, процессор должен перейти к обработке прерывания, имеющего более высокий приоритет. Этот процесс происходит на аппаратном уровне ядра процессора и называется последовательностью опроса прерываний (interrupt polling sequence ).

PIC vs . AVR vs MSP vs. mcs51. В семействе PIC 16 приоритет опроса того или иного прерывания определяется очередностью опроса соответствующего флажка прерывания. Приоритет опроса прерывания будет выше утех прерываний, у которых флажки запросов на прерывания будут опрашиваться в первую очередь. Порядок опроса флажков признаков прерывания целиком определяется программой обработки прерывания и может быть изменен при ее изменении.

В контроллерах PIC 18 при двухуровневой системе прерывания более высокий уровень приоритетаимеют прерывания с вектором 0x 000008. В пределах одного уровня приоритетность прерывания определяется программно, так же как и у PIC 16.

В семействе AVR приоритета опроса жестко фиксирован и не может быть изменен. Чем меньше адрес вектора прерывания, тем выше уровень опроса прерывания ему соответствующего.

В семействе MSP 430 приоритет опроса также жестко фиксирован и неизменяем, но зависимость приоритета опроса прерывания обратная – чем выше адрес вектора прерывания, тем выше приоритет опроса данного прерывания.

В семействе mcs 51 приоритет опроса полностью анологичен контроллерам семейства AVR .

Вложенные прерывания

При вложенных прерываниях, процедура обработки текущего прерывания может быть прервана (отложена) при поступлении запроса на прерывание, имеющего более высокий уровень приоритета. После обработки прерывания с более высоким уровнем приоритета процессор возвращается к прерванной процедуре и продолжает обработку данного прерывания до ее окончания или до нового прерывания. Очевидно, что процедура обработки прерывания с более высоким уровнем может быть в свою очередь прервана прерыванием с еще более высоким уровнем приоритета и т.д. При этом прерывания, имеющие более низкий уровень приоритета по сравнению с текущим , обычно запрещаются (маскируются).

PIC vs . AVR . В семействе PIC16 процедура обработки любого прерывания начинается с одного и того же адреса и реализовать вложенные прерывания крайне затруднительно, если это вообще возможно.

В контроллерах PIC 18 при двухуровневой системе прерывания возможно прерывание процедур прерывания с низким уровнем приоритета прерываниями, имеющими более высокий уровень.

В семействе AVR в процедурах обработки прерываний глобальные прерывания автоматически запрещаются, и процедура обработки прерывания не может быть прервана. Тем не менее, если это необходимо, то можно в процедуре обработки прерыванияиспользовать инструкцию разрешения прерываний, разрешая тем самым вложенность прерываний. Естественно, что в этом случае сама эта процедура может быть прервана любым прерыванием, даже если оно имеет меньший уровень приоритета, по сравнению с текущим уровнем.

Аналогично организована обработка прерываний в семействе MSP . Следует, однако, отметить, что организация программы с вложенными прерываниями требует от программиста особого внимания. Более того, обработка прерывания внутри другого прерывания вообще является нежелательной и должна применяться только в крайних случаях. Ввиду того, что флаги прерываний устанавливаются аппаратно вне зависимости от того, разрешены ли прерывания глобально битом GIE , в большинстве случаев не представляет сложности обработка прерываний без использования вложенности.

В семействе mcs 51 аппаратно предусмотрена возможность вложенных прерываний. Для этого каждому типу прерывания может быть задан уровень приоритета high и прерывание с данным уровнем может прервать обработку другого прерывания с уровнем приоритета low . Приоритеты внутри одного уровня приоритета располагаются согласно последовательности опроса прерываний (interrupt polling sequence ).

Важнейшими характеристиками системы прерываний является глубина прерываний и приоритет. В ЭВМ существует одноуровневая и многоуровневая система прерываний. В одноуровневых системах нет реакции при обработке прерываний на сигналы других поступающих прерываний. Удовлетворение запросов на прерывание в таких системах осуществляется только после завершения обработки ранее возникшего прерывания. В современных ПК используются многоуровневые системы, допускающие прерывания различной глубины. Глубина прерываний - это максимальное число программ ISR, которые могут прерывать друг друга. При этом, если глубина прерываний п, то может быть прервано п подпрограмм. Глубина возможных прерываний зависит от класса решаемых задач и определяется организацией очередности обработки прерываний. Одновременно поступившие запросы на прерывания на регистр прерываний МП, обрабатываются по принципу приоритетности. В первую очередь обслуживаются прерывания с наивысшим приоритетом. При поступлении запросов на прерывание соответствующий триггер в регистре прерываний устанавливается в 1. Перед завершением выполнения очередной команды МП опрашивает регистр прерываний. Очередность реализации запросов на прерывание устанавливается в порядке приоритета, заранее присвоенного каждому типу прерывания. Присвоение приоритета представляет собой сложную задачу, при решении которой необходимо учитывать важность и срочность обслуживания тех или иных прерываний. Обычно наивысшим приоритетом обладают прерывания от схем управления энергопотреблением и по машинной ошибке.

Прерывание подпрограмм ISR называется вложением прерываний. Для организации вложенных прерываний в каждой подпрограмме обслуживания прерываний необходимо выполнить:

1. разрешить прерывание по команде EI

2. временно запомнить приоритет прерванной программы

3. загрузить в схему приоритетных прерываний новый текущий приоритет

4. обслужить это прерывание

5. восстановить прежний приоритет

6. восстановить прерванную программу (командой IRET)

Аппаратные прерывания:

Внутренние (от процессора и сопроцессора)

Внешние:

Маскируемые

Немаскируемые

Программно-вызываемые прерывания

К внутренним прерываниям можно отнести и программно-вызываемые пре­рывания. Внутренние прерывания МП генерируются при возникновении особых условий при выполнении текущей команды (пример: деление на нуль переполнение разрядной сетки и т.п.).

Програмно-вызываемые прерывания выполняются под действием команды INT, и в этом случае действия МП аналогичны вызову программы ISR, т.е. сохранение в стеке адреса возврата, передача управления по указанному ад­ресу, но имеются и некоторые отличия:

A) выполняется прерывание, помещенное в стек и в регистре флагов сбрасы­вается в 0 бит IF (разрешения обработки прерываний).

Б) вместо адреса вызываемой подпрограммы аргументом вызова является номер вектора прерываний.

B) по окончании выполнения процедуры програмно-вызываемого прерыва­ния процессор извлекает из стека кроме адреса возврата и сохраненное зна­чение регистра флагов. Программо-вызываемые прерывания позволяют лег­ко и быстро вызывать процедуры из любого сегмента памяти, не применяядальних вызовов. Например, программное прерывание INT3 традиционно используется в целях отладки программ для создания точки останова и оно вызывается однобайтной инструкцией.

Вложенные прерывания

Этот механизм полностью поддерживается в ОС QNX Neutrino. В предыдущих сценариях описывалась самая простая и наиболее распространенная ситуация, когда возникает только одно прерывание. Однако для получения максимального значения задержки в отсутствие немаскированных прерываний следует рассматривать время с учетом сразу всех текущих прерываний, так как немаскированное прерывание с более высоким приоритетом будет вытеснять текущее прерывание.

На рис. 2.25 показан выполняемый Поток А. Прерывание IRQx запускает обработчик прерываний Intx, который вытесняется прерыванием IRQy и обработчиком прерываний lnty. Обработчик прерываний Inty возвращает событие, которое запускает Поток В, а обработчик прерываний Intx возвращает событие, которое запускает Поток С.

Вызовы, связанные с прерываниями

Программный интерфейс обработки прерываний включает в себя следующие вызовы ядра.

Посредством этого программного интерфейса поток с соответствующими пользовательскими привилегиями может вызывать функцию InterruptAttachQ или Interrupt Attach EventQ, передавая номер аппаратного прерывания и адрес функции в адресном пространстве потока, которая должна быть вызвана при возникновении прерывания. ОС QNX Neutrino позволяет с каждым номером аппаратного прерывания связывать множество обработчиков прерываний (ISR). Немаскированные прерывания могут обрабатываться во время выполнения уже запущенных обработчиков прерываний.

Далее приводится пример программного кода, с помощью которого обработчик прерываний (ISR) присоединяется к аппаратному прерыванию таймера (которое ОС также использует в качестве системных часов). Обработчик прерываний таймера, имеющийся в ядре, самостоятельно выполняет очистку источников прерываний, поэтому он только увеличивает значение счетчика в пространстве данных потока и затем передает управление ядру.

В результате пользовательские потоки, имеющие соответствующие привилегии, могут динамически присоединять (и отсоединять) обработчики прерываний к (от) векторам аппаратных прерываний в процессе их выполнения. Эти потоки могут быть отлажены на уровне исходного текста с помощью обычных отладочных средств, а сам обработчик прерываний может быть отлажен посредством вызова этого обработчика на уровне потока и пошагового выполнения на уровне исходного текста или посредством вызова функции InterruptAttachEventQ.

Когда происходит аппаратное прерывание, процессор вызывает модуль первичной обработки прерываний (interrupt redirector) микроядра. Данный модуль записывает на стек регистровый контекст выполняемого потока в соответствующий элемент таблицы потоков и затем устанавливает такой контекст, чтобы у обработчика прерываний был доступ к программному коду и данным потока, в котором содержится этот обработчик прерываний. Таким образом, обработчик прерываний получает возможность использовать буферы и код в пользовательском: потоке для определения источника возникшего прерывания и, в случае если поток требует выполнения работы более высокого уровня, сгенерировать событие для того потока, в который входит данный обработчик прерываний, после чего этот поток может обработать данные, которые обработчик прерываний поместил в принадлежащий ему буфер.

Поскольку обработчик прерываний отображается в контекст содержащего его потока, он может непосредственно оперировать устройствами, отображенными в адресном пространстве потока, или самостоятельно выполнять команды ввода/вывода. В результате это избавляет от необходимости связывать драйверы устройств с ядром.

Модуль первичной обработки прерываний, который содержится в микроядре, вызывает все обработчики, связанные с данным аппаратным прерыванием. Если возвращенное значение указывает на то, что процессу должно быть передано некоторое событие, ядро ставит это событие в очередь. После того как последний обработчик прерываний вызывается для обработки данного вектора прерываний, обработчик прерываний ядра завершает работу с устройством управления прерываниями и "возвращается из прерывания".

Этот возврат из прерывания не обязательно должен приводить в контекст прерванного потока. Если событие, поставленное в очередь, заставило поток с более высоким приоритетом перейти в состояние готовности (READY), то микроядро выполнит возврат из прерывания в контекст потока, который является активным в текущий момент.

Таким образом устанавливается период (т. н. задержка обработки прерывания) между возникновением прерывания и выполнением первой инструкции обработчика прерываний, а также период (т. н. задержка планирования) между последней инструкцией обработчика прерываний и первой инструкцией потока, приведенного обработчиком прерываний в состояние готовности.

Период максимальной задержки обработки прерывания строго определяется благодаря тому, что ОС запрещает прерывания только на время выполнения нескольких инструкций в нескольких критических секциях программного кода. Периоды, в течение которых прерывания запрещены, продолжаются строго определенное время и не имеют зависимости от данных.

Модуль первичной обработки прерываний, имеющийся в микроядре, выполняет несколько инструкций перед тем, как вызвать обработчик прерываний. В результате вытеснение процессов по аппаратным прерываниям или вызовам ядра происходит одинаково быстро и посредством одной и той же цепи инструкций.

Во время своей работы обработчик прерываний имеет полный доступ к оборудованию (поскольку является частью привилегированного потока), но другие вызовы ядра выполнять не может. Обработчик прерываний должен реагировать на аппаратное прерывание с максимально возможной скоростью, выполнять минимальный объем работы для обслуживания прерывания (чтение байта из универсального асинхронного приемопередатчика (UART) и т. д.) и, при необходимости, производить планирование потока с некоторым приоритетом для выполнения дальнейшей работы.

Максимальная задержка обработки прерывания для заданного аппаратного приоритета может быть непосредственно вычислена, исходя из значения задержки обработки прерывания, вносимой ядром, и максимального времени работы обработчика прерываний по каждому прерыванию, имеющему более высокий аппаратный приоритет, чем заданный обработчик. Поскольку приоритеты аппаратных прерываний могут переназначаться, самому важному прерыванию в системе можно присвоить наивысший приоритет.

Следует отметить, что вызов функции InterruptAttachEventQ не приводит к запуску обработчика прерываний. Вместо этого по каждому прерыванию генерируется заданное пользователем событие. Как правило, это событие приводит к планированию ожидающего потока, чтобы он мог выполнить основную работу. Прерывание автоматически маскируется после генерации события и должно в нужный момент явно демаскироваться потоком, обслуживающим устройство.

Таким образом, приоритет работы, осуществляемой по аппаратным прерываниям, может регулироваться самой операционной системой, а не оборудованием. Источник прерывания не генерирует нового прерывания до тех пор, пока не будет обслужено текущее, что позволяет управлять действием прерываний на критические секции программного кода и осуществлять высокоточное управление планированием.

Пользовательские процессы и потоки могут "перехватывать" не только аппаратные прерывания, но и различные "события" внутри микроядра. Когда происходит какое-либо из этих событий, ядро может вызвать указанную внешнюю функцию (upcall) в пользовательском потоке для обработки данного события. Например, при каждом вызове потока idle пользовательский поток может указать ядру сделать внешний вызов для реализации специальных режимов энергосбережения оборудования.

Бывает такая ситуация, когда надо на один периферийный девайс повесить много разных задач, а он всего один и что то надо с этим делать.

Простой пример — таймер и его прерывание по переполнению.
Мы можем задавать выдержку и по прерыванию делать какие-нибудь операции. Но если в один момент времени мы хотим чтобы таймер по прерванию сделал одну операцию, а потом другую, третью. Да сколько угодно, в зависимости от состояния. А вектор один.

Или, например, USART. Нам запросто может потребоваться, чтобы в зависимости от режима на прерывание по приходу байта выполнялся разный код. В одном режиме — выдача приветствия, в другом посыл матом в баню. В третьем удар в голову. А вектор один.

Конечно, можно добавить в обработчик прерывания switch-case конструкцию и по выбору режима перейти на нужный участок кода, но это довольно громоздко, а самое главное — время перехода будет разное, в зависимости от того в каком порядке будет идти опрос-сравнение switch-case структуры.

То есть в свитче вида:

1 2 3 4 5 6 7 switch (x) { 1 : Действие 1 2 : Действие 2 3 : Действие 3 4 : Действие 4 }

switch(x) { 1: Действие 1 2: Действие 2 3: Действие 3 4: Действие 4 }

Будет последовательное сравнение х вначале с 1, потом с 2, потом с 3 и так до перебора всех вариантов. А в таком случае реакция на Действие 1 будет быстрей чем реакция на Действие 4. Особо важно это при расчете точных временных интервалов на таймере.

Но есть простое решение этой проблемы — индексный переход. Достаточно перед тем как мы начнем ожидать прерывание предварительно загрузить в переменные (а можно и сразу в индексный регистр Z) направление куда нам надо перенаправить наш вектор и воткнуть в обработчик прерывания индексный переход. И вуаля! Переход будет туда куда нужно, без всякого сравнения вариантов.

В памяти создаем переменные под плавающий вектор:

Timer0_Vect_L: .byte 1 ; Два байта адреса, старший и младший Timer0_Vect_H: .byte 1

Подготовка к ожиданию прерывания проста, мы берем и загружаем в нашу переменную нужным адресом

CLI ; Критическая часть. Прерывания OFF LDI R16,low(Timer_01) ; Берем адрес и сохраняем STS Timer0_Vect_L,R16 ; его в ячейку памяти. LDI R16,High(Timer_01) ; Аналогично, но уже со старшим вектором STS Timer0_Vect_H,R16 SEI ; Прерывания ON

Все, можно запускать таймер и ждать нашего прерывания. С другими случаями аналогично.

А обработчик получается вида:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ;============================= ; Вход в прерывание по переполнению от Timer0 ;============================= TIMER_0: PUSH ZL ; сохраняем индексный регистр в стек PUSH ZH ; т.к. мы его используем PUSH R2 ; сохраняем R2, т.к. мы его тоже портим IN R2,SREG ; Извлекем и сохраняем флаговый регистр PUSH R2 ; Если не сделать это, то 100% получим глюки LDS ZL,Timer0_Vect_L ; загружаем адрес нового вектора LDS ZH,Timer0_Vect_H ; оба байта. CLR R2 ; Очищаем R2 OR R2,ZL ; Проверяем вектор на ноль. Иначе схватим аналог OR R2,ZH ; reset"a. Проверка идет через операцию OR BREQ Exit_Tm0 ; с накоплением результата в R2 ; так мы не портим содержимое Z и нам не придется; загружать его снова IJMP ; Уходим по новому вектору; Выход из прерывания. Exit_Tm0: POP R2 ; Достаем и восстанавливаем регистр флагов OUT SREG,R2 POP R2 ; восстанавливаем R2 POP ZH ; Восстанавливаем Z POP ZL RETI ; Дополнительный вектор 1 Timer_01: NOP ; Это наши новые вектора NOP ; тут мы можем творить что угодно NOP ; желательно недолго - в прерывании же NOP ; как никак. Если используем какие другие NOP ; регистры, то их тоже в стеке сохраняем RJMP Exit_Tm0 ; Это переход на выход из прерывания; специально сделал через RJMP чтобы; Дополнительный вектор 2 ; сэкономить десяток байт на коде возврата:))) Timer_02: NOP NOP NOP NOP NOP RJMP Exit_Tm0 ; Дополнительный вектор 3 Timer_03: NOP NOP NOP NOP NOP RJMP Exit_Tm0

;============================= ; Вход в прерывание по переполнению от Timer0 ;============================= TIMER_0: PUSH ZL ; сохраняем индексный регистр в стек PUSH ZH ; т.к. мы его используем PUSH R2 ; сохраняем R2, т.к. мы его тоже портим IN R2,SREG ; Извлекем и сохраняем флаговый регистр PUSH R2 ; Если не сделать это, то 100% получим глюки LDS ZL,Timer0_Vect_L ; загружаем адрес нового вектора LDS ZH,Timer0_Vect_H ; оба байта. CLR R2 ; Очищаем R2 OR R2,ZL ; Проверяем вектор на ноль. Иначе схватим аналог OR R2,ZH ; reset"a. Проверка идет через операцию OR BREQ Exit_Tm0 ; с накоплением результата в R2 ; так мы не портим содержимое Z и нам не придется; загружать его снова IJMP ; Уходим по новому вектору; Выход из прерывания. Exit_Tm0: POP R2 ; Достаем и восстанавливаем регистр флагов OUT SREG,R2 POP R2 ; восстанавливаем R2 POP ZH ; Восстанавливаем Z POP ZL RETI ; Дополнительный вектор 1 Timer_01: NOP ; Это наши новые вектора NOP ; тут мы можем творить что угодно NOP ; желательно недолго - в прерывании же NOP ; как никак. Если используем какие другие NOP ; регистры, то их тоже в стеке сохраняем RJMP Exit_Tm0 ; Это переход на выход из прерывания; специально сделал через RJMP чтобы; Дополнительный вектор 2 ; сэкономить десяток байт на коде возврата:))) Timer_02: NOP NOP NOP NOP NOP RJMP Exit_Tm0 ; Дополнительный вектор 3 Timer_03: NOP NOP NOP NOP NOP RJMP Exit_Tm0

Реализация для RTOS
Но что делать если у нас программа построена так, что весь код вращается по цепочкам задач через диспетчер RTOS? Просчитать в уме как эти цепочки выполняются относительно друг друга очень сложно. И каждая из них может попытаться завладеть таймером (конечно не самовольно, с нашей подачи, мы же программу пишем, но отследить по времени как все будет сложно).
В современных больших осях на этот случай есть механизм Mutual exclusion — mutex. Т.е. это своего рода флаг занятости. Если какой нибудь процесс общается, например, с UART то другой процесс туда байт сунуть не смеет и покорно ждет пока первый процесс освободит UART, о чем просемафорит флажок.

В моей механизмов взаимоисключений нет, но их можно реализовать. По крайней мере сделать некоторое минимальное подобие. Полноценную реализацию всего этого барахла я делать не хочу, т.к. моей целью является удержания размера ядра на уровне 500-800 байт.
Проще всего зарезервировать в памяти еще один байт — переменную занятости. И когда один процесс захватывает ресурс, то в эту переменную он записывает время когда ориентировочно он его освободит. Время идет в тиках системного таймера которое у меня 1ms.
Если какой либо другой процесс попытается обратиться к этому же аппаратному ресурсу, то он вначале посмотрит на состояние его занятости, считает время в течении которого будет занято и уйдет покурить на этот период — загрузит сам себя в очередь по таймеру. Там снова проверит и так далее. Это простейший вариант.

Проблема тут в том, что если на один вектор много желающих будет, то процессы так и будут бегать вокруг да около, словно бухая молодежь вокруг единственного сортира на площади в период праздничных гуляний. У кого нибудь да мочевой пузырь не выдержит — запорет алгоритм. А у кого тут фиг угадаешь, т.к. промоделировать это будет сложновато.

Решение проблемы — добавление еще одной очередной цепочки, на этот раз уже на доступ к ресурсу. Чтобы он не простаивал вообще. Т.е. один выскочил, тут же второй, третий и так далее пока все процессы не справят свою нужду в какой нибудь там USART.
Недостаток очевиден — еще одна очередь это дополнительная память, дополнительный код, дополнительное время. Можно, конечно, извратиться и на очередь к вектору натравить код диспетчера основной цепи. Но тут надо все внимательно отлаживать, ведь вызываться он будет по прерыванию! Да и громоздко, требуется лишь тогда, когда у нас много желающих.

Второе решение — выкинуть переменную времени занятости, оставив только флаг «Занято!». А процесс который пытается обратиться не убегает покурить, а отскакивает на пару шагов назад — на конец очереди задач и сразу же ломится обратно. Народ вокруг сортира не вокруг бегает, а толкется локтями у входа по принципу кто первый пролезет.
Недостаток другой — большая нагрузка на главный конвеер, куча запросов на постановку в очередь так недолго распухнуть на всю оперативку и повстречаться со стеком, а это черевато глобальным апокалипсисом.

Разумеется таймер тут приведен для примера, большую часть задач можно решить системным таймером RTOS, но если нужна вдруг меньшая дискретность или высокая скорость реакции на событие (а не пока главный конвеер дотащит задачу до исполнения), то механим управляемых прерываний, ИМХО, то что доктор прописал.

В семействе STM8 заложена очень полезная возможность экономии энергии в случае, когда быстрые и критичные ко времени обработки выполняются по прерываниям, а низкоприоритетные задачи работают в фоновом режиме. Для этого используется бит AL в регистре GCR и машинная команда WFI. Однако здесь был обнаружен подводный камень, не описанный в текущей версии errata на кристалл.

Данная проблема была обнаружена на кристалле stm8l152c6t6, установленном на STM8L-Discovery board.
В основном процессе был инициализирован таймер TIM4 для работы по прерываниям. Обработчик прерывания для него практически пустой (ну за исключением процедуры сброса бита TIM_SR1_UIF в регистре TIM4->SR1). Далее в основном процессе была разрешена запись в EEPROM путем разблокировки MASS и инициирована процедура записи байта с генерацией IRQ по ее окончании. После чего в регистре GCR был установлен бит AL и выполнена команда WFI.
В обработчике прерываний по завершению операции записи в EEPROM после чтения содержимого FLASH->IAPSR понижается приоритет выполняемого кода командой RIM или комбинацией PUSH #val/POP CC. Т.е. внутри EEPROM ISR разрешаются все остальные прерывания. И было обнаружено следующее: если EEPROM ISR была прервана другим прерыванием, то после возврата из вложенного прерывания выполнение обработки EEPROM ISR прекращается (т.е. такое впечатление, что CPU core переходит в состояние WFI, выполненное основным процессом).
Данная ошибка проявляется только при наличии следующих условий:

  1. Перед выполнением WFI в основном процессе бит AL в регистре GCR был установлен
  2. Приоритет EEPROM IRQ оставлен по умолчанию (т.е. содержимое регистра ITC->ISPR1 равно 0xFF)

Возможные workarounds:

  1. В основном процессе до выполнения инструкции WFI сбросить бит AL в GCR. При этом после каждого прерывания основной процесс будет возобновлять свое выполнение, что не очень хорошо скажется на энергопотреблении.
  2. Перед понижением приоритета внутри EEPROM ISR (т.е. до команд RIM или PUSH #val/POP CC) также сбросить бит AL в GCR. Опять-таки, в этом случае после завершения EEPROM ISR основной процесс продолжит свое выполнение, что не очень хорошо скажется на энергопотреблении.
  3. Изменить приоритет EEPROM IRQ в регистре ITC->ISPR1, например записав в него значение 0b11110111. Что самое непонятное, после этого начинают нормально работать команды RIM или PUSH #val/POP CC внутри EEPROM ISR (т.е. после возврата из вложенного прерывания обработка EEPROM ISR возобновляется).

Господа, у кого есть желание/возможность, попробуйте воспроизвести этот баг на других кристаллах семейства STM8/STM8L. Ибо если этот баг действительно воспроизводим, то надо пнуть STM на предмет его исправления или хотя бы внесения в errata sheet.

Получен официальный ответ от ST MCU Support Team:

SOLUTION PROPOSED BY SUPPORTER - 5/4/2017 15:52:59:
- Dear customer,

When an interrupt configure priority level to Level 0 (main), other interrupt executing IRET with AL bit set may put device back to WFI instead of execution of following instructions of previous code, as a consequence of priority level forced to Level 0 previously.

I recommend to use rather SW priorities than using RIM in the interrupt routine.

Best regards,
ST MCU Support Team



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: