Интерфейсы мониторов — типы разъемов. Разница между DVI-I и DVI-D

В настоящее время существует огромное количество разнообразных видеостандартов и интерфейсов. Одни используются уже больше десятка лет, другие только входят в нашу подседневную жизнь и в этом разнообразии довольно легко запутаться. Это так же сложно, как неспециалисту разобраться в шаблоне для форума . В этой статье мы сделали небольшую подборку различных интерфейсов для передачи видеосигнала, а также распространенных видеоразъемов.

Надеемся, эта информация окажется для вас полезной.

Композитный видеовыход

Композитный видеовыход предназначен для передачи по одному проводу всех составляющих видеосигнала в смешанном виде.

Обычно композитный разъем представляет из себя желтое гнездо RCA, или универсальный универсальный разъем SCART. Для передачи композитного видеосигнала используется коаксиальный кабель с разъемами RCA ("тюльпан") на концах.

Композитный видеосигнал (composite video ) используется еще со времен господства видеокассет, но не способен передавать сигнал высокого качества. По этой причине в настоящее время он используется только в недорогой видеоаппаратуре, например, в телевизорах с небольшой диагональю экрана (14"-21").

Компонентный видеовыход

Компонентный видеосигнал еще называется цветоразностным. Он содержит сигнал яркости (Y) и два цветоразностных сигнала (U и V), которые определяются по формуле:

Y = 0.299R + 0.587G + 0.114B

Для вывода изображения используется чересстрочная (interlaced ) или прогрессивная (progressive ) развертка. Чересстрочная развертка применяется во всех существующих системах телевизионного вещания. Прогрессивная развертка применяется в современном телевизионном стандарте HDTV и в современных DVD-проигрывателях , так как позволяет получить более высокое качество изображения.

Для передачи такого видеосигнала используются три отдельных коаксиальных кабеля, на концах которых находятся разъемы RCA ("тюльпан") или разъемы BNC.

Видеовыход S-Video

Разъем S-Video обычно используется для вывода видеосигнала с видеокамер, ПК и игровых приставок на бытовые телевизоры и другую бытовую видеотехнику. Интерфейс S-Video использует две сигнальные линии - сигнал цветности (C) и сигнал яроксти (Y). При использовании в качестве источника сигнала DVD плеера или или спутникового ресивера и телевизора с диагональю от 25" этот интерфейс позволяет нолучить более качественное изображение, чем композитный видеосигнал.

Кабель для передачи этого видеосигнала содержит разъемы различных типов: 2 разъема BNC, 2 разъема RCA ("тюльпан"), 4-контактный разъем Mini DIN или универсальный разъем SCART.

Видеовыход RGB

Для передачи цветного изображения на ЭЛТ-монитор используются сигналы интенсивности каждого из цветов RGB, а также сигналы горизонтальной (H) и вертикальной (V) разверток. В сумме получается пять сигналов - RGBHV.

Для передачи сигнала RGB используют 5 коаксиальных кабелей, оснащенных разъемами BNC.

VGA видеовыход

В разъем VGA, кроме сигналов RGB и синхронизации, добавлены еще так называемые сигналы DDC для передачи информации между видеокартой и монитором. Кабель VGA подключается с помощью разъема D-Sub с 15 штырьками (его также называют D-Sub 15 pin).

DVI видеовыход

Цифровой видеовыход DVI применяется в основном в видеоадаптерах персональных компьютеров. Он обеспечивает передачу сигнала в цифровой форме непосредственно с видеоадаптера компьютера или ноутбука на проектор. При этом не используется промежуточное цифро-аналоговое изображение (как в стандарте S-Video или в композитном видеосигнале), что позволяет получать картинку более высокого качества.

На сегодняшнее время имеются две разновидности разъема DVI:

  • универсальный комбинированный разъем DVI-I . Он позволяет подключать как цифровые, так и аналоговые мониторы (при наличии переходника с DVI-I на 15-контактный VGA D-Sub);
  • полностью цифровой разъем DVI-D , к которому можно подключать только цифровые мониторы. Такой разъем отличается от разъема DVD-I отсутствием четырех отверстий (контактов) вокруг горизонтальной прорези. Как правило, такой интерфейс используется только в дешевых видеокартах.

Кроме того, разъемы DVI (DVI-I и DVI-D) имеют две разновидности разъема: Single Link и Dual Link , отличающиеся количеством контактов. При этом в Dual Link используются все 24 цифровых контакта, в то время как в Single Link - только 18. Single Link применяется в устройствах с разрешением до 1920x1080 (так называемое HDTV). Для больших разрешений используется уже Dual Link, позволяющий вдвое увеличивать количество выводимых пикселов.

Видеовыход HDMI

Интерфейс HDMI (High Definition Multimedia Interface ) предназначен для подключения к DVD плеерам, спутниковым ресиверам и видеоадаптерам персональных компьютеров современных телевизоров и домашних конотеатров. На сегодняшний день он является стандартом для передачи цифрового аудио и видео в несжатой форме.

HDMI – это полностью цифровой цифровой формат, позволяющий передавать не только видео высокого разрешения, но и множество цифровых аудиоканалов, используя только один кабель. Кабель HDMI при ширине спектра сигнала до 10 Гбит/с позволяет не только выводить видеосигнал высокого разрешения, но и одновременно с ним передавать до восьми каналов высококачественного аудиосигнала.

Интерфейс HDMI является дальнейшим развитием интерфейса DVI-D и полностью с ним совместим, но имеет более совершенные параметры.

В настоящее время имеются следующие виды HDMI разъемов:

  • Type A, имеющий 19 контактов и получивший наибольшее распространение.
  • Type B, имеющий 29 контактов. У него расширенный видео-канал, что позволяет передавать видеоинформацию с разрешением выше 1080p. В настоящее время этот разъем еще не слишком востребован.
  • mini HDMI разработан для использования видеокамерах и портативных устройствах. Он являюется вариацией разъема HDMI Type A, но обладает с уменьшенными размерами.

Необходимо обратить внимание, что кабель HDMI не может иметь длину более 15 м.

Если расположить все описанные выше видеостандарты в порядке возрастания качества видеосигнала, то мы получим:

  • композитный (composite video)
  • S-Video
  • компонентный (component video)

Статья подготовлена специально для сайта

Компьютеры и ноутбуки уже лет 10 оснащаются не одним, а двумя-тремя видами разъёмов одновременно. Порты отличаются и по размеру, и по внешнему виду. Какой тип подключения монитора предпочесть? В статье также рассматривается практическая полезность одновременного подключения двух, а то и трёх мониторов.

Распространенные, но старые виды разъёмов

VGA (Video Graphics Array): устаревшая классика

Синий трапециевидный интерфейс доминировал в компьютерной сфере лет 25-30. Он великолепно справлялся со старыми ЭЛТ-дисплеями благодаря своей аналоговой природе. Но появились плоские ЖК-экраны – цифровые устройства, затем стали возрастать разрешения и старый-добрый VGA стал сдавать позиции.

Сегодня он всё реже встраивается в видеокарты, но до сих пор многие устройства (бытовые проигрыватели, проекторы, телевизоры) оснащаются поддержкой безнадёжно устаревшего VGA. Вероятно, ещё несколько лет «старичок» останется не слишком желательным, но повсеместно распространённым стандартом де-факто – если есть сомнения, каким кабелем можно будет подключить монитор в соседнем офисе, то берите VGA.

DVI-I (Digital Visual Interface): другой видеоинтерфейс-долгожитель

Вообще-то их несколько: DVI-A, -D и -I, плюс их разновидности. Но когда речь идёт о самом распространённом стандарте «Ди-Ви-Ай», то подразумевается аналогово-цифровой DVI-I Dual Channel – именно эта спецификация встроена в большинство ПК.

В своё время DVI пришёл на замену стремительно устаревающему в середине 2000-х VGA. Возможность передавать как аналоговый, так и цифровой сигнал, поддержка больших (в ту эпоху) разрешений и высоких частот, отсутствие недорогих конкурентов: DVI исправно служит стандартом и в наши дни. Но вряд ли его активная «жизнь» будет продолжаться больше, чем ещё 3-4 года.

Разрешения выше минимально комфортного на сегодня FullHD всё чаще встречаются даже в недорогих компьютерных системах. С ростом мегапикселей заканчиваются и некогда серьёзные возможности DVI. Не вдаваясь в технические подробности, отметим, что пиковые способности DVI не позволят выводить на экран изображение с разрешением свыше 2560 х 1600 с приемлемой частотой (выше 60 Гц).

Современные видеоинтерфейсы

HDMI (High Definition Multimedia Interface) – король мультимедиа

Когда-то несуразная для русского слуха аббревиатура «эйч-ди-эм-ай» всё плотнее входит в нашу жизнь. Почему именно HDMI стал таким популярным? Всё просто:

  • сколь угодно длинные провода (ладно, если честно – до 25-30 метров);
  • передача звука (даже многоканального!) вместе с видео – прощай, необходимость покупать отдельные колонки для ТВ;
  • удобнейшие небольшие коннекторы;
  • поддержка всюду – проигрыватели, «зомбоящики», проекторы, видеорегистраторы, игровые приставки – сложно сходу вспомнить о технике, где не было бы разъёма HDMI;
  • сверхвысокие разрешения;
  • 3D-картинка. И да, можно вместе со сверхвысокими разрешениями (версии HDMI 4b и 2.0).

Перспективы у HDMI самые радужные – развитие продолжается, в 2013 году были приняты спецификации версии 2.0: этот стандарт совместим со старыми проводами-разъёмами, но поддерживает всё более внушительные разрешения и другие «вкусные» возможности.

DisplayPort (DP): разъём, который только становится повсеместным

А ещё DisplayPort потрясающе красив внешне…

Многие годы компьютеры редко оснащались этим прямым конкурентом HDMI. И — несмотря на то, что всем хорош был DisplayPort: и поддержкой очень высоких разрешений вместе со стереосигналом; и передачей аудио; и внушительной длиной провода. Он даже выгоднее производителям, чем лицензируемый HDMI: не нужно выплачивать разработчикам стандарта те 15-25 центов, которые полагаются владельцам HDMI.

Разъёму DP просто не повезло в первые годы существования. Впрочем, компьютеры всё чаще оснащаются сразу парой Display Port современного стандарта версии 1.4. И на его основе «родился» другой популярнейший стандарт с огромными перспективами: «младший брат» Дисплей-порта…

Mini DP (Mini DisplayPort)

Вместе с HDMI и категорически устаревшим VGA, разъём Mini DisplayPort встраивается едва ли не в каждый компьютер и ноутбук. На его стороне все достоинства «старшего брата», плюс миниатюрные размеры – идеальное решение для постоянно утончающихся ноутбуков, ультрабуков, и даже смартфонов с планшетами.

Передача аудиосигнала, чтобы не докупать к монитору отдельные колонки? Пожалуйста – сколько вам каналов? Стереоскопия даже в 4K? Да, пусть интерфейсу и придётся поднапрячь все свои электронные мускулы. Совместимость? Переходники на рынке есть самые разнообразные, едва ли не на любой другой разъём. Будущее? Стандарт Mini DP живёт и развивается.

Thunderbolt: экзотические варианты подключения монитора

Есть и такие. Который уже год фирма Apple вместе с разработчиками Intel продвигают быстрый, универсальный, но безумно дорогой интерфейс Thunderbolt.

Зачем мониторам ещё и Thunderbolt? Вопрос остаётся который год без вразумительного ответа.

На практике мониторы с его поддержкой встречаются не так часто, да и есть большие сомнения в оправданности Thunderbolt для передачи видеосигнала. Разве что мода на всё «яблочное»…

К сожалению, за рамками статьи остаётся интереснейшая возможность подключать экраны к компьютеру (и даже подавать на них электропитание!) при помощи интерфейса USB 3.0 (или, ещё интереснее, 3.1). Перспектив у этой технологии множество, преимущества тоже имеются. Впрочем, это тема отдельного обзора – и ближайшего будущего!

Как подключить новый монитор к старому компьютеру?

Под «старым компьютером» чаще всего подразумевается ПК с единственным портом – VGA или DVI. Если новый монитор (или телевизор) категорически не хотят дружить с таким портом, то следует приобрести сравнительно недорогой переходник – от VGA к HDMI, от Mini DP к DVI и т.д. – вариантов множество.

При использовании переходников возможны некоторые неудобства (например, через VGA никак не передать звук или изображение с особо высоким разрешением), но такая схема будет работать исправно и надёжно.

Видеосигнал без проводов (WiDi)!

Существуют и такие интерфейсы, даже несколько. Intel Wireless Display (он же – WiDi, или «вай-дай», как бы странно ни звучало это для русскоязычного читателя): адаптер ценой около 30 долларов подключается в USB-разъём телевизора или монитора (если технология поддерживается производителем).

Сигнал отправляется через Wi-Fi, на экране – видеоизображение. Но это лишь в теории, а на практике существенными препятствиями являются расстояние и наличие стен между приёмником и передатчиком. Технология интересная, есть у неё и перспективы – но пока не более того.

Другой беспроводной видеоинтерфейс – AirPlay от Apple. Суть и практическое применение такое же, как и у WiDI от Intel. Дороговато, не слишком надёжно, далеко не практично.

Решение более интересное, но пока малораспространённое — Wireless Home Digital Interface (WHDi). Это не совсем Wi-Fi, хотя весьма похожая беспроводная технология. Ключевая особенность – проприетарный способ защиты от помех, задержек и искажений.

Подключение нескольких мониторов одновременно

С задачей присоединения основного или дополнительного экрана справится даже начинающий пользователь: монитор подключается к ПК или ноутбуку не сложнее, чем флешка. Подключить монитор к компьютеру возможно только правильным способом: коннектор попросту не войдёт в разъём, который для него не предназначен.

Отличная функция современных видеокарт и операционных систем – возможность подключения сразу нескольких мониторов к одному источнику сигнала (ПК, ноутбуку). Практическая польза огромная, притом в двух разных вариантах.

1. Режим клонирования изображения

Экран основного компьютера работает в обычном режиме. Но одновременно изображение полностью дублируется на крупнодиагональный телевизор и/или проектор. Достаточно лишь подключить видеокабель и к большому экрану, и к проектору. Звук передаётся вместе с изображением, если использовать современные разъёмы (HDMI, Mini DP).

2. Режим нескольких экранов

Разрешение мониторов постоянно растёт – но всегда найдутся задачи, для которых хотелось бы иметь экран пошире. Расчёты в крупной таблице Excel, или работа сразу с парой браузеров; дизайнерские задачи и редактирование видео. Даже набор текста удобнее, когда рядом с основным есть ещё и дополнительный дисплей. «Промежуток» – рамки экранов на практике мешают не больше, чем оправа очков – через несколько минут их просто не замечаешь. Любят использовать сразу несколько мониторов и геймеры – погружение в игровой процесс при такой схеме захватывает заметно более. Кстати, некоторые видеокарты AMD поддерживают аж до 6 мониторов одновременно (технология Eyefinity наделала в IT-сообществе много шуму ещё лет 5 назад).

Картинка: так можно вызвать настройки подключения второго или третьего монитора: щелчок по «Настройкам графики» от Intel или Nvidia.

Как подключить 2 й монитор к компьютеру? Вставить разъём кабеля – скорее всего, изображение моментально «подхватится» вторым экраном. Если этого не произошло, или требуются дополнительные настройки / другой режим – минутная работа в графическом драйвере видеокарты. Чтобы попасть в эту программу, достаточно щёлкнуть правой кнопкой по значку видеодрайвера Intel, Nvidia или AMD – в зависимости от того, какой видеоадаптер установлен в ПК, и выбрать пункт «Настройка». Иконка видеоадаптера всегда присутствует в Панели управления, и почти во всех случаях – в трее Windows, около часов.

Помимо того факта, что ЖК-мониторы для отображения картинки требуют цифровые данные, они отличаются от классических ЭЛТ-дисплеев ещё несколькими особенностями. К примеру, в зависимости от возможностей монитора, на ЭЛТ можно вывести практически любое разрешение, поскольку трубка не имеет чётко заданного числа пикселей.

А ЖК-мониторы из-за принципа своей работы всегда имеют фиксированное ("родное") разрешение, при котором монитор обеспечит оптимальное качество картинки. С DVI это ограничение не имеет ничего общего, так как его основная причина заключается в архитектуре ЖК-монитора.

ЖК-монитор использует массив крохотных пикселей, каждый из которых состоит из трёх диодов, по одному на основной цвет (RGB: красный, зелёный, синий). ЖК-экран, имеющий "родное" разрешение 1600x1200 (UXGA), состоит из 1,92 миллиона пикселей!

Конечно же, ЖК-мониторы способны выводить другие разрешения. Но в таких случаях картинку придётся масштабировать или интерполировать. Если, к примеру, ЖК-монитор имеет "родное" разрешение 1280x1024, то меньшее разрешение 800x600 будет растянуто до 1280x1024. Качество интерполяции зависит от модели монитора. Альтернативой является вывод уменьшенного изображения в "родном" разрешении 800x600, но при этом придётся довольствоваться чёрной рамкой.

На обоих кадрах показана картинка с экрана ЖК-монитора. Слева выведено изображение в "родном разрешении" 1280x1024 (Eizo L885). Справа находится интерполированное изображение в разрешении 800x600. В результате увеличения пикселей картинка выглядит блочной. Таких проблем на ЭЛТ-мониторах не существует.

Для отображения разрешения 1600x1200 (UXGA) с 1,92 миллиона пикселей и частотой вертикальной развёртки 60 Гц монитору требуется высокая пропускная способность. Если посчитать, то необходима частота 115 МГц. Но на частоту влияют и другие факторы, например прохождение области гашения, поэтому требуемая пропускная способность возрастает ещё больше.

Около 25% всей передаваемой информации относится ко времени гашения. Оно нужно для смены позиции электронной пушки на следующую строчку в ЭЛТ-мониторе. В то же время, ЖК-мониторам время гашения практически не требуется.

Для каждого кадра передаётся не только информация об изображении, но и учитываются границы, а также область гашения. ЭЛТ-мониторам необходимо время гашения, чтобы выключить электронную пушку по завершению вывода строчки на экране и перевести её на следующую строчку для продолжения вывода. То же самое происходит в конце картинки, то есть в нижнем правом углу - электронный луч выключается и меняет позицию на верхний левый угол экрана.

Около 25% всех пиксельных данных относятся ко времени гашения. Поскольку ЖК-мониторы электронную пушку не используют, здесь время гашения совершенно ни к чему. Но его пришлось учитывать в стандарте DVI 1.0, поскольку он позволяет подключать не только цифровые ЖК, но и цифровые ЭЛТ-мониторы (где ЦАП встроен в монитор).

Время гашения оказывается очень важным фактором при подключении ЖК-дисплея по DVI-интерфейсу, поскольку каждое разрешение требует определённой пропускной способности от передатчика (видеокарта). Чем выше требуемое разрешение, тем больше должна быть пиксельная частота TMDS-передатчика. Стандарт DVI оговаривает максимальную пиксельную частоту 165 МГц (один канал). Благодаря десятикратному умножению частоты, описанному выше, мы получаем пиковую пропускную способность данных в 1,65 Гбайт/с, которой будет достаточно для разрешения 1600x1200 на 60 Гц. Если требуется большее разрешение, то дисплей следует подключать по двухканальному DVI (Dual Link DVI), тогда два DVI-передатчика будут работать совместно, что даст удвоение пропускной способности. Подробнее этот вариант описан в следующем разделе.

Впрочем, более простым и дешёвым решением будет уменьшение данных гашения. В результате, видеокартам будет предоставлено больше пропускной способности, и даже DVI-передатчик на 165 МГц сможет справиться с более высокими разрешениями. Ещё одним вариантом можно считать уменьшение частоты горизонтального обновления экрана.

В верхней части таблицы показаны разрешения, которые поддерживает один DVI-передатчик на 165 МГц. Уменьшение данных гашения (в середине) или частоты обновления (Гц) позволяет достичь больших разрешений.


На этой иллюстрации показано, какая пиксельная частота требуется для определённого разрешения. Верхняя строчка показывает работу ЖК-монитора с уменьшенными данными гашения. Второй ряд (60Hz CRT GTF Blanking) показывает требуемую пропускную способность ЖК-монитора, если данные гашения нельзя уменьшить.

Ограничение TMDS-передатчика пиксельной частотой 165 МГц сказывается также и на максимально возможном разрешении ЖК-дисплея. Даже при уменьшении данных гашения мы всё равно упираемся в определённый предел. Да и снижение частоты горизонтального обновления может дать не очень хороший результат в некоторых приложениях.

Чтобы решить эту проблему, спецификация DVI оговаривает дополнительный режим работы, названный Dual Link. В данном случае используется сочетание двух TMDS-передатчиков, которые передают данные на один монитор через один разъём. Доступная пропускная способность удваивается до 330 МГц, чего вполне достаточно для вывода практически любого существующего разрешения. Важное замечание: видеокарта с двумя выходами DVI не является картой Dual Link, у которой два TMDS-передатчика работают через один порт DVI!

На иллюстрации показан двухканальный режим работы DVI, когда используется два TMDS-передатчика.

Впрочем, видеокарты с хорошей поддержкой DVI и уменьшенной информацией гашения будет вполне достаточно для вывода информации на один из новых 20" и 23" дисплеев Apple Cinema в "родном" разрешении 1680x1050 или 1920x1200, соответственно. В то же время, для поддержки 30" дисплея с разрешением 2560x1600 от интерфейса Dual Link уже никуда не деться.

Из-за высокого "родного" разрешения 30" дисплей Apple Cinema требует подключения по Dual Link DVI!

Хотя два разъёма DVI уже стали стандартом на high-end 3D-картах для рабочих станций, не все видеокарты потребительского уровня могут этим похвастаться. Благодаря двум разъёмам DVI мы всё же можем использовать интересную альтернативу.

На этом примере два одноканальных порта используются для подключения дисплея на девять мегапикселей (3840x2400). Картинка просто разделена на две части. Но этот режим должны поддерживать и монитор, и видеокарта.

На данный момент можно найти шесть различных разъёмов DVI. Среди них: DVI-D для полностью цифрового подключения в одноканальной и двухканальной версиях; DVI-I для аналогового и цифрового подключения в двух версиях; DVI-A для аналогового подключения и новый разъём VESA DMS-59. Чаще всего производители графических карт оснащают свои продукты двухканальным разъёмом DVI-I, даже если карта имеет один порт. С помощью адаптера порт DVI-I можно превратить в аналоговый выход VGA.

Обзор различных разъёмов DVI.


Раскладка разъёма DVI.

Спецификация DVI 1.0 не оговаривает новый двухканальный разъём DMS-59. Он был представлен рабочей группой VESA в 2003 году и позволяет вывести два выхода DVI на картах малого форм-фактора. Он также призван упростить расположение разъёмов на картах с поддержкой четырёх дисплеев.

Наконец, мы переходим к сути нашей статьи: качество TMDS-передатчиков разных графических карт. Хотя спецификация DVI 1.0 и оговаривает максимальную пиксельную частоту 165 МГц, не все видеокарты дают на ней приемлемый сигнал. Многие позволяют достичь 1600x1200 только на уменьшенных пиксельных частотах и со сниженным временем гашения. Если вы попытаетесь подключить к такой карте устройство HDTV с разрешением 1920x1080 (даже с уменьшенным временем гашения), ваш ждёт неприятный сюрприз.

Все графические процессоры, поставляемые сегодня ATi и nVidia, уже имеют встроенный на чип TMDS-передатчик для DVI. Производители карт на графических процессорах ATi чаще всего используют встроенный передатчик для стандартной комбинации 1xVGA и 1xDVI. Для сравнения, многие карты на графических процессорах nVidia используют внешний TMDS-модуль (к примеру, от Silicon Image), даже несмотря на наличие TMDS-передатчика на самом чипе. Чтобы обеспечить два DVI-выхода, производитель карты всегда устанавливает второй TMDS-чип независимо от того, на каком графическом процессоре базируется карта.

На следующих иллюстрациях показаны обычные дизайны.

Типичная конфигурация: один выход VGA и один DVI. TMDS-передатчик может быть как интегрирован в графический чип, так и вынесен на отдельный чип.

Возможные конфигурации DVI: 1x VGA и 1x Single Link DVI (A), 2x Single Link DVI (B), 1x Single Link и 1x Dual Link DVI, 2x Dual Link DVI (D). Примечание: если на карте установлены два выхода DVI, то это не означает, что они двухканальные! На иллюстрациях E и F показана конфигурация новых портов VESA DMS-59 с высокой плотностью, где обеспечивается четыре или два одноканальных выхода DVI.

Как покажет дальнейшее тестирование в нашей статье, качество выхода DVI на картах ATi или nVidia бывает весьма разным. Даже если отдельный TMDS-чип на карте известен своим качеством, это вовсе не означает, что каждая карта с этим чипом обеспечит высокое качество сигнала DVI. Даже его расположение на графической карте немало влияет на конечный результат.

Совместимость со стандартом DVI

Чтобы протестировать качество DVI современных графических карт на процессорах ATi и nVidia, мы выслали шесть образцов карт в тестовые лаборатории Silicon Image для проверки совместимости со стандартом DVI.

Что интересно, для получения лицензии DVI совсем не обязательно проводить тесты совместимости со стандартом. В результате, на рынок выходят продукты с заявленной поддержкой DVI, которые не соответствуют спецификациям. Одной из причин такого положения дел является сложная и, следовательно, дорогая процедура тестирования.

Отреагировав на эту проблему, компания Silicon Image в декабре 2003 года основала тестовый центр DVI Compliance Test Center (CTC) . Производители устройств с поддержкой DVI могут выслать свои продукты для тестирования на совместимость со стандартом DVI. Собственно, это мы и сделали с нашими шестью графическими картами.

Тесты разделены на три категории: передатчик (обычно видеокарта), кабель и приёмник (монитор). Для оценки совместимости DVI создаются так называемые глазковые диаграммы, представляющие сигнал DVI. Если сигнал не выходит за определённые границы, то тест считается пройденным. В противном случае устройство не совместимо со стандартом DVI.

На иллюстрации показана глазковая диаграмма TMDS-передатчика на частоте 162 МГц (UXGA) с передачей миллиардов битов данных.

Проверка глазковой диаграммы является самым важным тестом для оценки качества сигнала. На диаграмме заметны флуктуации сигнала (дрожь фазы, jitter), искажения амплитуды и эффект "звона". Эти тесты также позволяют наглядно увидеть качество DVI.

Тесты совместимости со стандартом DVI включают в себя следующие проверки.

  1. Передатчик: глазковая диаграмма с заданными границами.
  2. Кабели: создаются глазковые диаграммы до и после передачи сигнала, затем они сравниваются. И вновь, границы отклонения сигнала жёстко заданы. Но здесь уже допускаются большие расхождения с идеальным сигналом.
  3. Приёмник: вновь создаётся глазковая диаграмма, но опять же, допускаются ещё большие расхождения.

Самые большие проблемы при последовательной высокоскоростной передаче связаны с дрожью фазы сигнала. Если такого эффекта нет, то вы всегда можете чётко выделить сигнал на графике. Большинство флуктуаций сигнала создаются тактовым сигналом графического чипа, что приводит к появлению низкочастотной флуктуации частоты в диапазонах от 100 кГц до 10 МГц. На глазковой диаграмме флуктуация сигнала заметна по изменению частоты, данных, данных по отношению к частоте, амплитуды, слишком избыточному или слишком малому подъёму. Кроме того, измерения DVI различаются для разных частот, что необходимо учитывать при проверке глазковой диаграммы. Но благодаря глазковой диаграмме, можно наглядно оценить качество сигнала DVI.

Для измерений анализируется один миллион перекрывающихся участков с помощью осциллографа. Этого достаточно для оценки общей производительности соединения DVI, поскольку сигнал на протяжении длительного периода времени не будет существенно изменяться. Графическое представление данных производится с помощью специального программного обеспечения, которое Silicon Image создала в сотрудничестве с Tektronix. Сигнал, соответствующий спецификации DVI, не должен заступать на границы (синие области), которые автоматически прорисовываются программным обеспечением. Если сигнал попадёт на синюю область, то тест считается не пройденным, а устройство - не соответствующим спецификации DVI. Программа сразу же показывает результат.

Видеокарта не прошла тест совместимости с DVI.

Программное обеспечение сразу же показывает, прошла карта тест, или нет.

Для кабеля, передатчика и приёмника используются разные границы (глазки). Сигнал не должен заступать на эти области.

Чтобы понять, как определяется совместимость с DVI и что необходимо при этом учитывать, нам следует погрузиться в дополнительные детали.

Так как передача DVI полностью цифровая, то возникает вопрос, откуда появляется дрожание фазы сигнала. Здесь можно выдвинуть две причины. Первая - дрожание вызывается самим данными, то есть 24 параллельными битами данных, которые выдаёт графический чип. Однако данные автоматически корректируются в чипе TMDS при необходимости, что гарантирует отсутствие дрожания фазы в данных. Поэтому оставшейся причиной появления дрожания является тактовый сигнал.

На первый взгляд, сигнал данных свободен от помех. Это гарантируется благодаря регистру-защёлке (latch), встроенному в TMDS. Но главной проблемой всё же остаётся тактовый сигнал, который портит поток данных через 10-кратное умножение ФАПЧ.

Так как частота умножается в 10 раз с помощью ФАПЧ, влияние даже небольшого искажения увеличивается. В итоге данные попадают на приёмник уже не в своём первоначальном состоянии.

Сверху показан идеальный тактовый сигнал, ниже - сигнал, где один из фронтов начал передаваться слишком рано. Благодаря ФАПЧ, это напрямую влияет на сигнал данных. В общем, каждое возмущение тактового сигнала приводит к ошибкам при передаче данных.

Когда приёмник семплирует повреждённый сигнал данных с помощью "идеального" тактового сигнала гипотетического ФАПЧ, он получает ошибочные данные (жёлтая полоса).

Как это работает на самом деле: если приёмник будет использовать повреждённый тактовый сигнал передатчика, он всё ещё сможет считать повреждённые данные (красная полоса). Именно поэтому тактовый сигнал тоже передаётся по кабелю DVI! Приёмнику требуется тот же самый (повреждённый) тактовый сигнал.

Стандарт DVI включает в себя устранение дрожания фазы (jitter management). Если оба компонента будут использовать один и тот же повреждённый тактовый сигнал, то информация может считываться из повреждённого сигнала данных без ошибок. Таким образом, совместимые с DVI устройства могут работать даже в условиях наличия низкочастотного дрожания фазы. Ошибку в тактовом сигнале тогда можно обойти.

Как мы уже объясняли выше, DVI работает оптимально, если передатчик и приёмник используют один и тот же тактовый сигнал и их архитектура одинакова. Но так бывает не всегда. Именно поэтому использование DVI может привести к появлению проблем, несмотря на сложные меры предотвращения дрожания фазы.

На иллюстрации показан оптимальный сценарий для передачи DVI. Умножение тактового сигнала в ФАПЧ (PLL) приводит к задержке. И поток данных уже не будет целостным. Но всё выправляется с помощью учёта той же самой задержки в ФАПЧ приёмника, поэтому данные принимаются корректно.

Стандарт DVI 1.0 чётко определяет задержку ФАПЧ. Такая архитектура называется несвязанной (non-coherent). Если ФАПЧ не соответствует данным спецификациям по времени задержки, то могут появиться проблемы. В индустрии сегодня ведутся горячие дискуссии по поводу того, следует ли использовать подобную несвязанную архитектуру. Причём, ряд компаний выступает за полный пересмотр стандарта.

В этом примере используется тактовый сигнал ФАПЧ вместо сигнала графического чипа. Следовательно, сигналы данных и тактовые сигналы согласованы. Однако из-за задержки в ФАПЧ приёмника данные обрабатываются некорректно, и устранение дрожания фазы уже не работает!

Теперь вам должно быть понятно, почему использование длинных кабелей может стать проблемным, даже если не учитывать внешние помехи. Длинный кабель может вносить задержку в тактовый сигнал (напомним, что сигналы данных и тактовые сигналы имеют разные частотные диапазоны), дополнительная задержка может влиять на качество приёма сигнала.

Вывести видео изображение на монитор или телевизор сегодня можно разными способами – вариантов портов для подключения с каждым годом становится всё больше, и не мудрено запутаться в количестве и разнице интерфейсов.

Разберемся в наиболее популярных форматах и определим случаи, когда тот или иной стандарт видео порта подойдет лучше всего.

VGA

Старейший из стандартов сопряжения ПК и монитора, который существует по сей день. Разработанный еще в 1987-м году компанией IBM компонентный видеоинтерфейс, использует аналоговый сигнал для передачи цветовой информации. В отличии от более современных стандартов, VGA не позволяет передавать звук – только картинку.

Коннектор VGA, как правило, синего цвета с двумя винтами по бокам. Он имеет 15-контактный разъем и изначально мог работать только на разрешении 640 на 480 пикселей, используя палитру из 16-ти цветов. Позже стандарт развился в так называемый Super VGA, поддерживающий более высокие расширения экрана и количество цветов до 16 миллионов цветов. А так как усовершенствованный стандарт продолжил использовать старый порт и внешне не изменился, то и называют его по старинке просто VGA.

Чаще всего данный формат используется на старом оборудовании, однако многие компьютеры по-прежнему снабжены этим портом. Что называется – на всякий случай.

DVI

Больше десяти лет спустя после выхода стандарта VGA свет увидел формат DVI – цифровой видеоинтерфейс. Вышедший в 1999-м году интерфейс был способен передавать видео без компрессии в одном из трех режимов: DVI-I (Integrated) – объединенный формат цифровой и аналоговой передачи, DVI-D (Digital) – поддержка только цифрового сигнала, DVI-A (Analog) – поддержка только аналогового сигнала.

Порты DVI-I и DVI-D могут идти в одинарном или двойном режиме. Во втором случае удваивается пропускная способность, что позволяет получать разрешение экрана высокой четкости – до 2048 на 1536 точек. Однако для этого нужно иметь и соответствующую видеокарту. Сами порты отличаются количеством контактов – так одинарный режим (Single link) использует четыре витых пары проводов (максимальное разрешение 1920 на 1200 пикселей при 60 Гц), а двойной режим (Dual link), соответственное, большее число контактов и проводов (разрешение до 2560 на 1600 при 60 Гц).

Важно помнить, что аналоговый вариант DVI-A не поддерживает мониторы стандарта DVI-D, а видеокарту с DVI-I можно подключить к монитору DVI-D кабелем с двумя коннекторами DVI-D-вилка. По аналогии с VGA, данный стандарт также передает на экран только видео изображение без звука. Однако с 2008-го года производители видеокарт сделали передачу звука возможной – для этого необходимо использовать кабель DVI-D – HDMI.

Также можно встретить на рынке и формат mini-DVI, придуманный компанией Apple, склонной к уменьшению всего и вся. Однако мини-стандарт работает только в одинарном режиме, а значит не поддерживает расширение выше, чем 1920 на 1200 пикселей.

HDMI

High Definition Multimedia Interface или интерфейс для мультимедиа высокой четкости позволяет передавать цифровые видео и аудио сигналы, да еще и с возможностью защиты от копирования. HDMI меньше своих предшественников по размеру, работает на более высокой скорости, а главное – передает звук, что позволило отправить на пенсию прежние стандарты SCART и RCA («тюльпаны») для подключения видеоустройств к телевизорам.

Спецификация HDMI 1.0 появилась в конце 2002 года и имела максимальную пропускную способность 4,9 Гб/с, поддержку 8-канального звука и видео до 165 МПикс/сек (то есть FullHD при 60 Гц). С тех пор стандарт постоянно развивался, а в 2013-м увидела свет спецификация HDMI 2.0 с пропускной способностью до 18 Гбит/с, поддержкой разрешения 4К (3840 на 2160 пикселей при 60 Гц) и 32-канального звука.

Сегодня стандарт HDMI используют не только компьютеры, но и цифровые телевизоры, DVD и Blu-ray проигрыватели, игровые приставки и многие другие устройства. При желании можно использовать переходники с HDMI на DVI и обратно.

Число контактов на HDMI портах начинается от 19-ти, а сами разъемы выпускаются в нескольких форм-факторах, самые распространенные из которых HDMI (Type-A), mini-HDMI (Type-C), micro-HDMI (Type D). Кроме того, есть HDMI порты для приема сигнала (HDMI-In) и для передачи (HDMI-Out). Внешне они практически неотличимы, но если, скажем, у вашего моноблока есть оба порта, то при попытке вывести картинку на второй монитор вы сможете воспользоваться только одним из них, а конкретно тем, что HDMI-Out.

DisplayPort

В 2006-м году был принят еще один видеостандарт для цифровых мониторов. DisplayPort, также как HDMI, передает не только видео, но и аудио, и служит для подключения компьютера с дисплеем или домашним кинотеатром. DisplayPort имеет более высокую скорость передачи данных, поддержку разрешения вплоть до 8К (7680 на 4320 пикселей при 60 Гц) в версии 1.4, вышедшей в марте 2016-го, а картинку через порт можно выводить на несколько мониторов (от двух до четырех, в зависимости от разрешения).

DisplayPort специально разрабатывался для вывода картинки с компьютеров на мониторы, тогда как HDMI больше предназначался для подключения различных устройств к телевизору. Однако данные порты можно использовать вместе при помощи адаптера Dual-Mode DisplayPort.

Есть также и вариации Mini DisplayPort, применяющиеся в первую очередь в ноутбуках. В частности, уменьшенный формат любим компанией Apple.

Thunderbolt

Наконец, стандарт от компании Intel (при совместной работе с Apple) для подключения переферийных устройств к компьютеру. Именно Apple была первой, кто в 2011-м году выпустил устройство с данным интерфейсом – ноутбук MacBook Pro.

Максимальная скорость передачи данных – 20 Гбит/с при использовании оптоволокна для версии 2, тогда как 3-я версия интерфейса способна работать на скорости до 40 Гбит/с. Thunderbolt объединяет в себе не только интерфейс DisplayPort, но и PCI-Express, а значит подключить к нему можно почти всё, что угодно. В частности, допускается подключение к одному порту до шести устройств, что сокращает необходимость иметь на устройстве огромное число различных портов.

Сам разъем Thunderbolt меньше, чем у mini-DisplayPort, а его третья версия и вовсе являет собой порт, совместимый с USB 3.1, то есть выполнен с разъемом USB Type-C.

Универсальный USB

Если вы вдруг переживаете, что в скором времени придется обновлять всю домашнюю технику в связи с изменением стандартов, то не спешите. Производители стремятся упростить историю с многочисленными интерфейсами и обеспечить поддержку старых устройств посредством переходников. В частности, для HDMI устройств необходимо будет использовать лишь соответствующий переходник, дабы иметь возможность подключения к современному порту USB Type-C.

По аналогии с тем, что ранее каждый производитель мобильных телефонов имел собственный разъем для подзарядки, а ныне большинство использует порт micro-USB, видеостандарт также стремится к унификации. И объединяющим форм-фактором должен стать именно USB-порт последнего поколения, по которому будут подключаться как мониторы, так и обычные наушники да гарнитуры.

В данной статье мы подробно расскажем о разъеме DVI, который можно встретить во многих мониторах, телевизорах и другой технике. Немного углубимся в историю этого популярного интерфейса, а также разберемся в его видах и особенностях. А еще обязательно сравним DVI-разъем с некоторыми прогрессивными интерфейсами. Эта информация станет полезна многим пользователям, а также упростит процесс работы с техникой и позволит избежать различных сложностей при работе.

Что такое DVI-выход?

Популярный разъем, известный как DVI-выход (Digital Visual Interface) предназначается для качественной передачи изображения (видео) на различные приборы цифрового типа. Как правило это проекторы, мониторы и телевизоры.

Разработала данный видеоинтерфейс компания DDWG. Часто в интернете можно найти расшифровку этих английских букв DVI в следующем виде — цифровой видео интерфейс. Эти слова более понятны для многих пользователей, которые только начинают узнавать мир компьютерной и остальной техники. Данный разъем имеет определенный цвет и форму, благодаря чему его довольно просто отличить от других выходов. Подключение прибора к самой разной технике происходит довольно просто, не требуя обязательных профессиональных умений и навыков.

История DVI разъема

В 1999 году компания Digital Display Working Group официально представила абсолютно новый на тот момент стандарт на интерфейс под названием Digital Visual Interface (DVI). Его разработкой занимались ведущие специалисты из IBM, Intel, Fujitsu и других известнейших корпораций, которые пришли в DDWG с одной целью — создать по-настоящему инновационный интерфейс для передачи цифрового видеосигнала на мониторы и прочие средства вывода изображения.

Появление DVI ознаменовало закат эпохи VGA, который за 10 лет морально и физически устарел. Это позволило не только улучшить качество контента, но и значительно повысить разрешение дисплеев. Примечательно, что DVI-разъемы актуальны и по сей день, хотя уже сейчас существуют серьезные соперники, которые постепенно вытесняют «ветерана».

Особенности DVI

Что касается DVI, то он использует формат данных, который базируется на технологии PanelLink. Речь идет о передаче информации, которая происходит последовательно, а также изначально реализованной компанией Silicon Image. Тут применяется технология TMDS, когда передача сигналов происходит дифференциально, чтобы максимально снизить перепады касательно уровней. Задействованные каналы в числе трех, передают видеосигнал со скоростью до 3,5 Гбит в секунду. Если используется кабель до 10 метров в длину, то можно передавать картинку в формате FHD (1920 на 1200 точек). Когда применяется более длинный соединительный кабель, тогда разрешение «урезается» до HD-формата.

В некоторых ситуациях может быть задействован канал Display Data Channel (DDC). С его помощью получится передать важную информацию о дисплее непосредственно самому процессору, который установлен в источнике сигнала. Сюда входят все подробные данные, касающиеся характеристик прибора. Речь идет о марке, дате производства, модели, размере и разрешении дисплея. Источник будет учитывать эту информацию, отправив сигнал с оптимальными настройками для конкретного экрана. Если источник не получает нужные данные, то возможна блокировка TMDS-канала.

Есть поддержка HDCP, которая является продвинутой системой защиты. Она реализована и в более продвинутом интерфейсе HDMI. Можно устанавливать разнообразные уровни защищенности контента, отталкиваясь от собственных потребностей. Основной принцип работы HDCP — подключенные при помощи DVI приборы обмениваются паролями между собой. Так и происходит внутреннее шифрование.

Нужно отметить, что DVI-разъем способен передавать исключительно изображение. Что касается звука, то не передается в данном случае. Поэтому необходимо позаботиться о соответствующих каналах. Примечательно, что сегодня для определенных видеокарт существуют специальные переходники, которые дают возможность одновременно передавать звук и картинку.

Виды DVI выходов

Пользователь может столкнуться с несколькими видами выходов. Среди них:

  • DVI-А
  • DVI-I (SingleLink)
  • DVI-I (DualLink)
  • DVI-D (SingleLin)
  • DVI-D (DualLink)

Поэтому несложно догадаться, что выходы имеют определенные отличия. Кроме отличий в конструкции, они также имеют несоответствия и в особенностях. Часто поднимается вопрос в разнице между Single link и Dual link. В них есть немало отличий. Оба варианта отличаются друг от друга количеством контактов. Двойной линк использует при работе все двадцать четыре контакта. А сингл линк, который переводится как одиночный, имеет всего восемнадцать контактов. Если пользователю нужно большее разрешение, то ему больше подходит первый вариант. Сингл линк подойдет для устройств, которые имеют разрешение 1920 на 1080. С ним возможности пользователи становятся намного меньше.

DVI-A выход

Данный выход предполагает только возможность аналоговой передачи. Дополнительная буква дает возможность пользователю догадаться, что «А» — означает аналоговый. Разъем представляет собой вилку в кабеле или переходнике, которая позволяет произвести подключение видеоустройств (аналоговых) к выходу типа DVI-I.

DVI-I выход

Этот разъем бывает двух типов: Single link и Dual link. Первый вариант очень востребован и распространен. Дополнительная буква I сообщает пользователю о том, что он является интегрированным. Выход довольно часто используют для цифровых дисплеев и видеокарт. Особенности данного выхода заключаются в том, что в нем объединены сразу два канала передачи. В устройстве совмещен цифровой и аналоговый каналы. Они не зависят друг от друга, поэтому одновременно не работают. В задачу прибора входит решить самостоятельно, благодаря чему он будет функционировать. Разъем Dual link с буквой I передает аналоговый сигнал. У него есть целых два цифровых канала. Это позволяет пользователю добиться намного лучшего качества изображения и расширить свои возможности.

DVI-D выход

Здесь буква «D» сообщает об английском слове Digital, которое можно перевести – цифровой. В этом варианте нет аналогового канала. При этом разъеме происходит только цифровая передача. Как и в предыдущих выходах здесь идет разделение на одиночный и двойной. Single link немного ограничит пользователя. Разрешение не сможет превышать более 1920 на 1200 (при частоте 60 Гц). В этом варианте только один цифровой канал. Пользователь не сможет подключить аналоговый монитор, а также радоваться технологии под названием nVidia 3D Vision. Зато Dual link поможет смотреть на мониторе 3Д, увеличивая возможности пользователя. Здесь два цифровых канала.

DVI-I и DVI-D в чем же принципиальная разница?

DVI-I поддерживает и цифровую и аналоговую передачу данных, а DVI-D только цифровую.

Совместимость DVI разъемов

DVI-A будет иметь совместимость только с DVI-A. Для передачи аналогового сигнала. Что касается DVI-D, то обеспечивает передачу только цифрового видео контента. Его совместимость возможна только с DVI-D. Далее следует упомянуть универсальное решение, которое пойдет для самых разных устройств. Это идет речь о DVI-I. В некоторых случаях можно использовать переходники. Но это возможно только тогда, когда это предусмотрено производителем того или иного прибора.

Переходник помогает решить проблему, но может повлиять на качество изображения. Видов этих устройств довольно много. Встречаются следующие: DVI – HDMI, VGA – DVI и другие востребованные устройства. Кабели DVI-D и DVI-I могут работать в двойном режиме (дуал линк). В этом случае пропускная способность удваивается. Для этого применяется дополнительные контакты. Такое решение дает возможность передать гораздо больше информации, что благоприятно отражается на частоте и изображении монитора, которые становятся выше. Если необходимость воспользоваться технологией nVidia 3D Vision, то дуал линк просто необходим в обязательном порядке. Также, стоит знать, что крупные ЖК-мониторы, имеющие большое разрешение, совместимы с разъемом DVI-D Dual-Link.

Распиновка DVI выходов

Сравнение DVI разъема с HDMI и Display Port

Первенство среди разъемов сейчас находится у DP — у display port. Он сменил довольно быстро предыдущие разработки. Он отличается прекрасной пропускной способностью, а также пользователь получает намного больше новых возможностей. Прибор позволяет не терять в качестве, а также выделяется небольшими размерами. Он уже начал понемногу вытеснять dvi и hdmi. Однако еще далеко не все мониторы имеют именно те разъемы, которые бы подошли к этой новинке.

Пока произойдут изменения в системе их производства, придется ждать довольно долго. Большинство производителей не спешат использовать для своей техники это устройство. Поэтому даже во многих современных и популярных моделях еще не встретить DP. Поэтому у dvi и hdmi еще не все потеряно. Последний вариант отлично справляется с передачей цифрового видео вместе со звуком. Прибор можно встретить в популярных и новых моделях техники. Этот интерфейс поможет получить высокое разрешение. Каждый год появляются улучшенные версии, которые имеют не только отличную пропускную способность, но и дают пользователю намного больше возможностей. Звук и видео не ухудшаются в качестве даже при длине кабеля в 10 метров. Разъем dvi также остается известным и востребованным. Его можно встретить на многих устройствах, так как производители предпочитают отдавать ему свое предпочтение благодаря его универсальности.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: